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Abstract

We establish a strategic equivalence between cursed equilibrium and the

introduction of fictitious players in Bayesian games, allowing for controlled ma-

nipulation of cursedness in lab settings. We consider a cheap-talk setting in-

volving one sender and multiple receivers, one real and several fictitious. The

sender knows the real receiver’s type but his message is shared with all receivers.

Uninformed of her being real or fictitious, the real receiver will neglect the corre-

lation between the message and her type—she has cursed beliefs. By adjusting

the number of fictitious receivers, our lab results align with the comparative

statics predicted by cursed equilibrium.
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1 Introduction

Cursed equilibrium, a concept introduced by Eyster and Rabin (2005), has

emerged as a powerful framework for understanding deviations from standard

equilibrium predictions in various strategic environments. The applicability of

cursed equilibrium has been demonstrated in a wide range of settings, including

common value auctions (Kagel and Levin, 1986), revelation games (Forsythe,

Isaac, and Palfrey, 1989), jury voting (Guarnaschelli, McKelvey, and Palfrey,

2000), signaling games (Szembrot, 2018), and adverse selection (Wenner, 2019).

The notion of cursedness captures the limited strategic sophistication of play-

ers, who may not fully comprehend the correlation between the actions of other

players and their private information. The concept of cursedness has garnered

attention not only for its normative and behavioral appeal but also for its em-

pirical success in explaining laboratory data. In fact, recent work has extended

the notion of cursedness to extensive form games (Cohen and Li, 2022; Fong,

Lin, and Palfrey, 2023), further broadening its applicability and relevance in

understanding strategic decision-making.

In this paper, we revisit the effectiveness of cursed equilibrium in organizing

experimental data. While cursed equilibrium has shown success in explaining

qualitative results observed in laboratory settings, several limitations need to

be addressed. Firstly, the previous literature often treated cursed equilibrium

as the sole candidate to explain deviations from the standard Bayesian equilib-

rium. Laboratory data that qualitatively aligns with the predictions of cursed

equilibrium was deemed conclusive evidence in its support, neglecting a thor-

ough consideration of alternative explanations.1 Secondly, a recurring issue in

1To the best of our knowledge, there are only two exceptions in the literature. The first
exception is Koch and Penczynski (2018) which provide a joint experimental analysis of two
alternative explanations for the winner’s curse in common value auctions: belief formation
and conditional reasoning. They show that overbidding decreases in similar magnitudes when
1) participants play a transformed version of the auction that does not require conditional
reasoning and 2) assistance in belief formation is provided, relative to the standard common
value auction game. The second exception is Szembrot (2018) where structural estimation
is performed separately using predictions derived from the quantal response equilibrium and
those from the cursed equilibrium, arguing that the predictions based on the quantal response
equilibrium fail to adequately explain their experimental data, leading them to favor the
cursed equilibrium as the more accurate model.
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previous studies is that the calibrated degree of cursedness at times has exceeded

the acceptable range, which cannot be reasonably interpreted within the cursed

equilibrium framework.2 This raises doubts regarding the descriptiveness and

general applicability of cursed equilibrium.

To establish the effectiveness of cursed equilibrium as an explanatory frame-

work, it is crucial to provide more direct empirical evidence, which necessitates

two key steps. The first step involves demonstrating that individuals intrinsi-

cally neglect the correlation between the other players’ actions and their private

information—i.e. they are intrinsically cursed. This step appears to be already

well-established given the abundant evidence that people neglect correlations

in information sources in various environments such as belief formation (Eyster

and Weizsacker, 2016), portfolio choices (Enke and Zimmermann, 2019), voting

(Moser and Wallmeier, 2021), and school choices (Tergiman, 2024). The second

step entails showcasing that individuals’ behavior systematically aligns with the

predictions of cursed equilibrium when cursedness is known to be present. Our

primary contribution lies in introducing a novel approach to comprehensively

address the second step by enabling the controlled manipulation of cursedness

within a laboratory setting. Specifically, we focus on investigating whether shifts

in players’ behavior in response to changes in cursedness align with the com-

parative statics predicted by cursed equilibrium. Importantly, the laboratory

environment we create ensures that the induced degree of cursedness is common

knowledge among all participants.

The key instrument that allows us to manipulate cursedness is the intro-

duction of fictitious players into a game. Instead of the real Bayesian game,

fictitious players play an auxiliary game in which each player’s payoff does not

directly depends on other players’ types. Specifically, the auxiliary game and

2For the calibrated values of cursedness in various strategic environments, refer to Sections
3-5 of Eyster and Rabin (2005). In the specific context of bilateral trade, they found that
“fully cursed equilibrium is a much better fit for these lemons data than Bayesian Nash
equilibrium, although the overly extreme degree of cursedness that we estimate suggests an
aspect of behavior in this setting not captured by our model” (Eyster and Rabin, 2005, pp.
1639). In the context of a common value auction, the estimated degrees of cursedness for
individual subjects presented in Table II (pp. 1648) indicate that 19 out of 23 inexperienced
subjects and 6 out of 14 experienced subjects fall outside the acceptable range.
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the Bayesian game share the same type space and action space. Given a fixed

action profile, in the Bayesian game, a real player i’s payoff depends both on

her own type θi and her opponents’ types θ−i; in the auxiliary game, in con-

trast, a fictitious player i with the same type θi gets a payoff equivalent to the

expected payoff of the real player i in the Bayesian game conditional on θi—i.e.

the fictitious player behaves as if they were a real player in the Bayesian game

who completely ignores the information content in her opponents’ actions about

their types. As a result, if a real player is unsure about whether she is real or

fictitious, she will indeed neglect the correlation between her opponents’ actions

and their types partially—i.e. she is cursed.

The formal procedure goes as follows: First, we randomly label a fraction,

say χ, of the subjects as fictitious players and the rest as real players, without

informing the subjects of their roles. Second, we conduct the Bayesian game

among real players and the auxiliary game among fictitious players, without

informing the subjects of the game they are playing. The procedure, including

the fraction of fictitious players, is common knowledge to every subject, and

thus no deception is involved. In the meantime, the real players will hold the

belief—one that is incorrect from the experimenter’s point of view—that they

may be fictitious with probability χ and thus appear to be cursed.3 Naturally,

our focus will be on the strategy and the payoff of the real players who are cursed

by design. Comparative statics regarding different levels of cursedness can be

obtained by varying the fraction of fictitious players. We introduce the formal

apparatus and present the theoretical results regarding the strategic equivalence

between the Bayesian game and the auxiliary game in Section 2.

We implemented the controlled manipulation of cursedness in a canonical

yet simplified cheap-talk environment, involving a privately informed sender

and an uninformed receiver (Crawford and Sobel, 1982). There are several rea-

sons why this specific environment is considered one of the best for studying

3Note that it is crucial that the equilibrium actions in the real game and also the fictitious
game are not informative about whether the game being played is real or fictitious; otherwise
the agents may update their beliefs and thus perceive a level of cursedness different from χ
in equilibrium. Thus, it helps if the players in the real game and those in the fictitious game
are ex ante identical. In this sense, replacing fictitious players with a preprogammed machine
can potentially be problematic.
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cursed equilibrium. Firstly, it is a two-player signaling game in which the re-

ceiver does not have private information, meaning that whether the sender is

cursed is irrelevant. At the same time, the sender’s strategy is a mapping from

his private information to the action space, ensuring that the cursedness of the

receiver matters. This allows us to focus on the receiver’s cursedness, facili-

tating cleaner comparative statics. Secondly, compared to other environments

such as common value auctions and jury voting, the association between the

sender’s type and the message is more explicit because the sender’s message

solely serves to transmit his private information. This reduces the likelihood

that the receiver has, or is perceived to have, excessive (uncontrolled) intrinsic

cursedness which may confound our experimental results regarding the compar-

ative statics of controlled cursedness in the laboratory. Moreover, theoretically,

this environment yields non-trivial comparative statics regarding both players’

strategies and welfare across varying degrees of cursedness, enabling us to inves-

tigate the intricate relationship between cursedness and players’ strategies and

welfare. Previous work by Lee, Lim, and Zhao (2023) has demonstrated that

an appropriate level of cursedness can enhance the overall welfare of the game

relative to a curse-free environment (0-cursed). We reproduce these theoretical

predictions within our simplified communication environment in Section 3.

A cursed receiver in cheap-talk games behaves as if she incorrectly believes

that there is a positive probability that the sender’s messages are completely

uninformative. Therefore, controlling cursedness is equivalent to controlling the

incorrect model in the receiver’s mind, which might appear challenging to imple-

ment in experiments without deception. However, with the procedure we have

described, we can control cursedness by manipulating the fraction of fictitious

players in the game. Since the sender’s cursedness is irrelevant, we only need to

introduce fictitious receivers. Each fictitious receiver, who is otherwise identical

to a real receiver, gets a message randomly drawn from the set of messages

sent in the real Bayesian games, which are completely uninformative about the

fictitious player’s payoff type. By varying the number of fictitious receivers, we

create two experimental treatments: High Cursed (HC) and Low Cursed (LC),

where the real receivers are cursed to different extents. Additionally, we include
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two benchmark treatments: one without fictitious receivers where communica-

tion is standard (Standard Talk, ST), and another without fictitious receivers

but with optimally mediated communication (Mediated Talk, MT). This results

in four experimental treatments. Theoretically, across our treatments, there is

a clear ranking of welfare measured by the payoff of the real receivers: LC >

MT ≈ HC > ST.

Our experimental data provide strong empirical support for the compar-

ative statics predicted by the cursed equilibrium. Firstly, in Treatment ST,

senders used a separating strategy less frequently and a pooling strategy more

frequently than in all other treatments. Furthermore, the outcome achieved in

Treatment LC exhibits a higher degree of separation compared to the outcomes

in Treatments ST and HC. Lastly, the average earnings of the real receivers are

significantly smaller in Treatment ST than in each of Treatments MT, LC, and

HC, while the average earnings of the real receivers are higher in Treatment

LC than in each of Treatments ST, MT, and HC, although these differences are

not statistically significant. These findings provide valuable empirical evidence

that supports the predicted outcomes of the cursed equilibrium. Moreover, they

illustrate the usefulness of our strategic equivalence and the incorporation of fic-

titious players as a robust framework for studying and manipulating cursedness

in laboratory experiments.

In the meantime, we have identified two contradictory phenomena in our

experimental data: the prevalent over-communication observed in Treatment

ST and the unexpected under-communication observed in the other three treat-

ments.4 Moreover, real receivers in HC use a separating strategy less frequently

and a pooling strategy more frequently than those in ST, despite the fact that

the truth-telling equilibrium exists in HC but not in ST. It is challenging to

reconcile these observed phenomena using standard methods in literature such

as preferences for truth-telling or the cost of lying. The standard level-k ap-

proach a la Crawford (2003) assuming that level-0 senders are truthful and

level-0 receivers are credulous cannot explain our data either. To explain these

4See Blume, Lai, and Lim (2019b) for a comprehensive review of the literature on over-
communication.
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observations, we consider the possibility that our experimental participants may

bring some intrinsic cursedness to the lab. Assuming that the intrinsic cursed-

ness follows a truncated normal distribution, we find that concentrating the

degree of intrinsic cursedness around 0.46 can effectively rationalize our data.

Notably, when we incorporate individual heterogeneity in the degree of intrin-

sic cursedness, the range of means that can consistently rationalize our data

expands.

To summarize, our findings present two important results. Firstly, we ob-

serve that participants’ behavior is qualitatively consistent with the comparative

statics predictions from the cursed equilibrium. Secondly, we find that a reason-

able distribution of intrinsic cursedness can account for the key deviations from

the theoretical predictions. Our experimental design has a unique feature—

the level of controlled cursedness is common knowledge to all participants. In

treatments LC and HC, for example, it is common knowledge among the partic-

ipants that the real receivers will neglect the correlation between the state and

the senders’ messages more compared with ST in which there are no fictitious

receivers. Such a common knowledge increases the validity of the comparative

statics we obtain in the lab, and thus plays a crucial role in the success of cursed

equilibrium as an explanatory framework. Clearly, the participants’ belief hier-

archy about how cursed they are can affect their behavior in the game. In our

view, differences in this belief hierarchy across strategic settings may be one of

the factors that contribute to the variation in the calibrated degrees of cursed-

ness in previous literature. For example, a bidder in a common value English

auction may perceive other bidders to be less cursed than they really are, and

thus, she may bid higher and appear to be more cursed.

A caveat of our approach is that our controlled cursedness features a specific

manifestation of players neglecting the correlation between opponents’ actions

and their types. In particular, a cursed player in our setting holds this bang-bang

belief that either her opponents are playing the equilibrium strategy in which

case she should make the rational Bayesian inferences about her opponents’

types, or, with some probability, her opponent’ actions are completely uninfor-

mative about their types in which case she should just keep her prior. Although
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this mathematically captures the exact formulation of cursedness in Eyster and

Rabin (2005), whether this realistically describes the mistakes that subjects

commit in their thought processes remains to be further investigated. That

being said, by varying the auxiliary game (or introducing multiple auxiliary

games), our fictitious-players approach can be easily generalized to implement

a large class of incorrect beliefs regarding the correlation between opponent’s

actions and types. Basically, each auxiliary game corresponds to an incorrect

model in the mind of the agents.

The paper is organized as follows. Section 2 establishes the strategic equiv-

alence between cursed equilibrium and the injection of fictitious players in a

broad class of Bayesian games. In Section 3, we provide a detailed description

of the simplified communication game environment. The experimental design

is presented in Section 4, followed by a set of testable hypotheses in Section 5.

The experimental results are reported in Section 6, and we present the results

from the calibration exercise to measure the degree of intrinsic cursedness in

Section 7.

2 Cursedness and Fictitious Players

Consider a standard Bayesian game G = (N,Θ, Y, u, π), in which N = {1, . . . , n}

is a finite set of players, Θ = ⨉
n
i=1 Θi is the set of possible type profiles, Y = ⨉

n
i=1 Yi

is the set of possible action profiles, u = (u1, . . . , un) is the profile of payoff

functions, and π ∈ ∆(Θ) is the (full support) common prior shared by all players.

For each i ∈ N , Θi and Yi are the finite set of possible types and actions of player

i, respectively, and ui ∶ Θ × Y → R is her payoff function. A (mixed) strategy

for player i, σi ∶ Θi →∆(Yi), specifies a probability distribution over actions for

each type.

For each i ∈ N , let Θ−i and Y−i be respectively the possible type profiles and

action profiles without player i. Player i’s belief about other players’ types given

her own type θi ∈ Θi is πi(⋅∣θi) ∈ ∆(Θ−i), which is pinned down by π and Bayes’

rule. For any strategy profile σ and each i ∈ N , let σ−i(⋅∣θ−i) ∈ ⨉j≠i ∆(Yj) be

the distribution of actions that player i’s opponents under σ when their types
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are θ−i ∈ Θ−i; let σ−i(y−i∣θi) = ∑θ−i∈Θ−i
σ−i(y−i∣θ−i)πi(θ−i∣θi) be the conditional

probability that y−i is played when player i is of type θi and all of player i’s

opponents follow σ.

To define the notion of cursedness, given any σ and i ∈ N , let πi(⋅∣θi, y−i, σ−i) ∈

∆(Θ−i) be the correct posterior belief player i should have if the rest of the

players play y−i ∈ Y−i under strategy σ, and π̂i(⋅∣θi, y−i, σ−i) ∈ ∆(Θ−i) be the

posterior belief player i really has. In particular, for any χ ∈ [0,1], we say that

player i is χ-cursed if

π̂i(⋅∣θi, y−i, σ−i) = π̂
χ
i (⋅∣θi, y−i, σ−i) ∶= χπi(⋅∣θi) + (1 − χ)πi(⋅∣θi, y−i, σ−i)

for all θi ∈ Θi, y−i ∈ Y−i, and strategy profile σ such that σ−i(y−i∣θi) > 0. We say

that a player is Bayesian if she is 0-cursed.

Now we define the χ-cursed equilibrium, similar to Eyster and Rabin (2005).

Definition 1. For any χ ∈ [0,1], a strategy profile σ is a χ-cursed equilibrium

if for each i ∈ N , θi ∈ Θi, and each y∗i such that σi(y∗i ∣θi) > 0,

y∗i ∈ arg max
yi∈Yi

∑
θ−i∈Θ−i

∑
y−i∈Y−i

ui(θi, θ−i, yi, y−i)π̂
χ
i (θ−i∣θi, y−i, σ−i)σ−i(y−i∣θi).

In order to implement cursed beliefs among the players, we first introduce

an auxiliary game as follows. For all i ∈ N , (θi, θ−i) ∈ Θ, and (yi, y−i) ∈ Y , define

ui(θi, yi, y−i) = ∑
θ′
−i∈Θ−i

ui(θi, θ
′
−i, yi, y−i)πi(θ

′
−i∣θi).

Thus, ui the average payoff to player i if her type is θi and (yi, y−i) is played.

In other words, ui is independent of θ−i. Given strategy profile σ of G, let the

auxiliary game G∗ = (N,Θ, Y, u, π). Essentially, in G∗, each player behaves as

if she learns nothing about her opponent’s type from their actions. Thus, for

every action profile (yi, y−i) and type θi, the expected payoff of player i is taken

with respect to πi(⋅∣θi), irrespective to the action profile played.

Now let Gχ = χG∗ + (1 − χ)G. Thus, in Gχ, nature moves first to select the

game to be played, of which the players are not informed: The auxiliary game
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G∗ is played with probability χ, and G is played with probability 1 − χ. The

following observation is immediate.

Proposition 1. For any χ ∈ [0,1], a strategy profile σ is a Bayesian Nash

equilibrium of Gχ if and only if it is a χ-cursed equilibrium of G.

Note that although G and Gχ are strategically equivalent in the sense of the

proposition above, the welfare considerations of G and Gχ can be quite different.

In G, the χ-cursed players behave as if they are Bayesian but incorrectly believe

that Gχ is played. Thus, when evaluating the ex ante welfare of these players,

the payoffs in the auxiliary game G∗ should be irrelevant. To be more specific,

given any strategy profile σ, the ex ante welfare of player i in G that is χ-cursed,

denoted as EUσ
i (G,χ), should be given by

EUσ
i (G,χ) = ∑

(θi,θ−i)∈Θ
∑

(yi,y−i)∈Y
ui(θi, θ−i, yi, y−i)πi(θ−i∣θi, y−i, σ−i)σ−i(y−i∣θi)σi(yi∣θi)πi(θi)

in which πi(θi) denotes the prior probability that player i draws type θi. Note

that in the evaluation of EUσ
i (G,χ), πi is used instead of π̂i, and, as a result,

EUσ
i (G,χ) does not depend on χ. Since πi takes into account the correct cor-

relation between θ−i and y−i, using πi gives rise to the real average payoff that

player i would get from the game.

By contrast, the ex ante welfare of a Bayesian player i in Gχ given σ, denoted

as EUσ
i (G

χ,0), should be given by

EUσ
i (G

χ,0) = χEUσ
i (G

∗,0) + (1 − χ)EUσ
i (G,χ),

in which

EUσ
i (G

∗,0) = ∑
θi∈Θi

∑
(yi,y−i)∈Y

ui(θi, yi, y−i)σ−i(y−i∣θi)σi(yi∣θi)πi(θi)

= ∑
(θi,θ−i)∈Θ

∑
(yi,y−i)∈Y

ui(θi, θ−i, yi, y−i)πi(θ−i∣θi)σ−i(y−i∣θi)σi(yi∣θi)πi(θi)

is the ex ante welfare of a Bayesian player i in G∗ given strategy profile σ. It is

clear that EUσ
i (G

∗,0) may be different from EUσ
i (G,χ), precisely because the
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correlation between θ−i and y−i through σ−i is not payoff-relevant in G∗, as if

the players have completely neglected such correlation.

The exercise above suggests that we may introduce fictitious roles into games

to capture the welfare implications of cursedness. Consider the following imple-

mentation of Gχ with a population of subjects:

1. Randomly label χ fraction of the subjects as the fictitious players and

label the rest as the real players. Subjects are not informed of their roles

2. Divide the real players into groups of n and play G. Divide the fictitious

players into groups of n and play G∗. Subjects are not informed of the

game that they are playing.

Let the ex ante welfare for a real, Bayesian player i in the experiment above

given strategy profile σ be EUσ
i (G

χ,0∣real). The following proposition enables

us to analyze the welfare implications of cursedness in G by analyzing the real

players in the experiment above.

Proposition 2. Suppose all subjects are Bayesian. Then for all i ∈ N , χ ∈ [0,1],

and strategy profile σ, we have EUσ
i (G

χ,0∣real) = EUσ
i (G,χ).

Our goal is to implement cursedness in the lab by varying χ in Gχ. In reality,

it is plausible that the subjects may bring some level of intrinsic cursedness,

denoted as χ0, to the lab. Thus, the following results will be useful in our

calibration exercise.

Proposition 3. The following statements are true for all χ0, χ ∈ [0,1] and

χ̂ = χ0 + (1 − χ0)χ:

(i) A strategy profile σ is a χ0-cursed equilibrium of Gχ if and only if it is a

χ̂-cursed equilibrium of G.

(ii) Suppose all subjects are χ0-cursed. Then for all i ∈ N and strategy profile

σ, we have EUσ
i (G

χ, χ0∣real) = EUσ
i (G, χ̂), in which EUσ

i (G
χ, χ0∣real) is the ex

ante welfare for a real, χ0-cursed player i in the experiment given strategy profile

σ.

10



Hence, using the experimental procedure described above, we will be able

to obtain comparative statics regarding how cursedness affects welfare in G by

analyzing how χ affects the welfare of the real players in the experiment.

3 A Simplified Strategic Communication Game

The concept of cursed equilibrium is used to capture the limited strategic so-

phistication of players, who may not fully comprehend the correlation between

the actions of other players and their private information. To investigate the im-

plications of cursed beliefs, we will examine a simplified version of the strategic

communication game as described in Crawford and Sobel (1982). Two-player

signaling games are simple environments in which the receiver’s type is not

payoff-relevant, and thus whether the sender is cursed does not matter. This al-

lows us to concentrate on the receiver’s cursedness, potentially leading to cleaner

comparative statics. This environment yields non-trivial comparative statics

regarding both players’ strategies and welfare across varying degrees of cursed-

ness, enabling us to investigate the intricate relationship between cursedness

and players’ strategies and welfare. Moreover, compared to other environments

such as common value auctions and jury voting, the association between the

sender’s type and the message is more explicit because the sender’s message

solely serves to transmit their private information, reducing the likelihood of

the receiver’s intrinsic cursedness being a major confounding factor when inter-

preting experimental results based on the comparative statics induced by the

controlled manipulation of cursedness in the laboratory.

A cursed receiver in cheap talk games behaves as if she incorrectly believes

that with a positive probability, the sender’s message is completely uninforma-

tive. Lee et al. (2023) investigate the equilibrium predictions and the welfare

implications of cursed beliefs in the standard communication game. It is shown

that cursed beliefs (which they frame as prior bias) can be regarded as a non-

standard garbling device that mitigates the strategic concerns by weakening the

link between the receiver’s actions and the sender’s messages, and does so with-

out contaminating the information content of the messages. Our experiment
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may also serve as a test of their findings.

Now we introduce the game that we will implement in our experiment. There

are two players, N = {S,R}, in which S is the sender and R is the receiver. The

sender’s type θ is drawn from ΘS ∈ {0,1}. There is no uncertainty regarding

the receiver’s type and it is not payoff-relevant. Both players share the common

prior π ∈ ∆(ΘS) such that that π(1) = p ∈ (0,1). The sender selects a message

m ∈ YS = {0,1}, and the receiver takes selects an action y ∈ Y ⊆ [0,1], after

observing the message. Thus, the set of possible action plans for the receiver

YR = Y {0,1}, which is the set of all mappings from the message space {0,1}

to Y . Given θ ∈ {0,1}, y(⋅) ∈ Y {0,1}, and m ∈ {0,1}, The sender’s payoff is

US(θ,m, y(⋅)) = −(y(m) − θ − b)2, and the receiver’s payoff is UR(θ,m, y(⋅)) =

−(y(m) − θ)2, in which b ≥ 0.

3.1 Equilibrium Predictions when Y = [0,1]

Now we present equilibrium predictions when Y = [0,1]; that is, the receiver

can choose any action from [0,1]. Although we will further discretize Y in

the actual experiment, these equilibrium predictions will serve as a guide for

parameter selection.

3.1.1 Cursed Talk

To avoid issues related to off-equilibrium path beliefs, we will focus on equilibria

in which all messages in YS are used. Fong, Lin, and Palfrey (2023) and Cohen

and Li (2022) extend the idea of cursed equilibrium to extensive games. In each

paper, a consistency requirement, similar to the one for standard sequential

equilibrium, is imposed on beliefs off the equilibrium path. Fong et al. (2023)

demonstrated that their consistency requirement mandates that the belief at

any non-terminal history, regardless of whether it is on or off the equilibrium

path, must assign a minimum weight of χ to the belief from the preceding period.

In contrast, Cohen and Li (2022) allow each player to neglect the correlation

between their opponents’ actions and their private information, irrespective

of whether this information is exogenously provided or endogenously acquired
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during the game. In many of their applications, beliefs off the equilibrium path

do not play a role, much like in our game.

Formally, a strategy profile σ = (σS, σR) is said to be exhaustive if

σS(m) ∶= ∑
θ∈ΘS

σS(m∣θ)π(θ) > 0

for every m ∈ YS. Given an exhaustive strategy profile, all information sets

in the game can be reached with positive probability. Thus, we get subgame

perfection for free.

Definition 2. A exhaustive strategy profile σ = (σS, σR) is a χ-cursed equilib-

rium of the simplified strategic communication game if for each θ ∈ ΘS, each

y∗(⋅) ∈ YR such that σR(y∗(⋅)) > 0, and each m∗ such that σS(m∗∣θ) > 0,

y∗(m) ∈ arg max
y(⋅)∈YR

∑
θ∈ΘS

UR(θ,m, y(⋅))π̂
χ(θ∣m,σS), ∀m ∈ YS

m∗ ∈ arg max
m∈YS

∑
y∈YR

US(θ,m, y(⋅))σR(y(⋅)),

in which π̂χ(θ∣m,σS) = χπ(θ) + (1 − χ)σS(m∣θ)π(θ)σS(m) .

It is easy to see that Y = [0,1] and quadratic utility together ensure that

it is without loss of generality to focus on pure strategies for the receiver. In

particular, in equilibrium, given the sender’s strategy σS, the receiver’s action

plan y(⋅) must satisfy

y(m) = ∑
θ∈ΘS

θπ̂χ(θ∣m,σS) = π̂
χ(1∣m,σS) = χp + (1 − χ)

σS(m∣1)p

σS(m)

for every m ∈ YS.

As usual, the babbling equilibrium always exists, in which the receiver will

take the ex ante optimal action p regardless of the sender’s message. In this

case, the receiver’s ex-ante welfare is −p(1 − p). In the separating equilibrium,

the sender’s strategy is σS(⋅∣0) = δ0 and σS(⋅∣1) = δ1, in which δm is the Dirac

measure at m ∈ YS. In this case, the equilibrium action plan of the receiver must

be y(0) = χp and y(1) = (1−χ)+χp. Incentive compatibility on the sender’s side
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then requires US(0,0, y(⋅)) ≥ US(0,1, y(⋅)), which reads b ≤ 1−χ
2 + χp. Clearly, in

the separating equilibrium, the ex-ante welfare of the receiver is −χ2p(1 − p).

When b > 1−χ
2 + χp, it can be shown that no informative equilibrium can be

sustained.

Similar to the standard cheap talk game with quadratic preferences, the ex

ante welfare of the sender and the receiver is aligned in our game. Thus, it is

without loss of generality to focus on the ex ante welfare of the receiver.

3.1.2 Mediated Talk

Lee et al. (2023) show that cursed beliefs mitigate the strategic tension be-

tween the sender and the receiver, but unlike standard information garbling

devices that have a similar effect, it does so without contaminating the content

of the messages. As a result, cursedness may further enhance welfare beyond

the bound achieved by standard garbling devices. In order to compare the wel-

fare implication of cursedness with that of standard garbling devices, we now

introduce a mediator in the spirit of Goltsman, Hörner, Pavlov, and Squintani

(2009). To allow for intrinsic cursedness that subjects bring to the lab, we will

characterize optimal mediation with a cursed receiver.

Given that the receiver is χ-cursed, the mediator chooses Borel probability

measures µ(⋅∣θ) on Y = [0,1] for each θ ∈ ΘS that solve the following optimiza-

tion problem:

max
µ(⋅∣θ), θ∈ΘS

∑
θ∈ΘS

Eµ[−(y − θ)2∣θ]π(θ)

subject to Eµ[−(y − θ − b)2∣θ] ≥ Eµ[−(y − θ − b)2∣θ′], ∀θ, θ′ ∈ ΘS

y = χp + (1 − χ)
pµ(y∣1)

pµ(y∣1) + (1 − p)µ(y∣0)
, if pµ(y∣1) + (1 − p)µ(y∣0) > 0,

in which Eµ[⋅∣θ] is the conditional expectation operator with respect to µ(⋅∣θ).

Basically, the mediator maximizes the receiver’s ex ante welfare (which is aligned

with the sender’s) subject to the constraints that the sender will truthfully

report her type to the mediator and that the χ-cursed receiver will follow the

mediator’s recommendation.
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It can be shown that when b ≤
1−χ

2 + χp, optimal mediation induces the

separating equilibrium; when b ≥ 1−χ
2 +

(1+χ)p
2 , optimal mediation induces the

babbling equilibrium; when 1−χ
2 + χp < b < 1−χ

2 +
(1+χ)p

2 , it is optimal for the

mediator to recommend 2b − 1 +χ −χp if θ = 0, and recommend 1 −χ +χp with

probability φ and 2b − 1 + χ − χp with probability 1 − φ if θ = 1, in which

φ =
p − b

2p(1 − χ + χp − b)
+

1

2p
.

In this case, the ex ante welfare of the receiver under optimal mediation is

(1−p)[(1−χ−2b)(1+χ)+χ(2+χ)p]. We provide the proof in Online Appendix

A.

Thus, in any case, we can always restrict attention to the following type of

mediation/information garbling: When the message sent by the sender is m = 0,

the same message will be delivered to the receiver; when the message sent by

the sender is m = 1, with probability φ̃, m = 1 will be delivered to the receiver,

and with probability 1 − φ̃, m = 0 will be delivered to the receiver.

4 Experimental Design

A cursed receiver in cheap talk games behaves as if she incorrectly believes that

with a positive probability, the sender’s messages are completely uninformative

about the type. Hence, controlling cursedness is equivalent to controlling the

incorrect model in the receiver’s head, which may seem impossible to implement

in experiments without deception. With the guidance of Proposition 3, however,

we can control cursedness by controlling the proportion of fictitious roles in the

game. Since the sender’s cursedness does not play a role in our game, we only

have to introduce fictitious receivers.

There are three roles in our experiment: S, True R, and False R. At the

beginning of the game, X participants are randomly assigned the role of S,

another X the role of True R, and the rest (Y people) the role of False R. Each

individual is informed whether the assigned role is S or not. If the role is not

S, then no further information about whether the role is True R or False R
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is provided. Then, the state is drawn independently for each individual who

is assigned True R or False R. One S and one True R (who does not know

if him/herself is True R or False R) are randomly paired to play the cheap

talk game. False R’s are not paired with anyone, but still, receive a message

randomly chosen from all messages sent by S participants such that they cannot

tell they are not paired. Finally, each of the R participants takes an action that

affects his/her payoff and, if he/she is paired, the corresponding S participant’s

payoff.

The procedure above is announced to all participants of the game in a Zoom

meeting, and thus, the game setup is common knowledge to all participants.

Each S participant knows that he/she observes the true state, while each R

participant thinks that with probability Y
X+Y , he/she is False R and the mes-

sage he/she receives is not informative. In addition, each S participant knows

that the R paired with him/her exhibits mistrust. Thus, under this setup, the

game played between each S and True R pair exactly implements (controlled)

cursedness χ = Y
X+Y .

It is worth emphasizing that under the setup above, if all S participants

play the same strategy σS, the Bayesian posterior of an R participant upon

receiving message m is exactly given by π̂χ(⋅∣m,σS) with χ = Y
X+Y . For this to

be true, it is crucial that each False R receives a message randomly drawn from

all S participants. When all S participants are playing the same strategy, the

ex ante distribution of messages that a False R may receive is the same as the

ex ante distribution of messages that a True R may receive. This means that

the message that each R participant receives is completely uninformative about

her role, which gives rise to the posterior π̂χ(⋅∣m,σS).

One alternative way of implementing cursedness among receivers is to match

fictitious receivers with preprogrammed machine senders.5 However, if machines

are perceived to behave differently from human senders, then the equilibrium

actions in both the real game and the fictitious game will be informative about

the receiver’s role, and thus the level of cursedness implemented will be dif-

5Note that adding machine receivers to the game does not affect the human subjects’
beliefs at all.
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ferent from χ. Thus, implementing cursedness with machines requires careful

calibration of the preprogrammed strategies. We opt not to go this route.

4.1 The Antidote Game

We implement the strategic communication game above as the Antidote Game

in our experiments. Consider two treasure hunters S and R who are poisoned

in the middle of their adventure. They have the recipe to make an antidote,

according to which a certain kind of toxic herbal extract is the main ingredient.

R has 5 grams of the herbal extract while S does not have any. The exact

amount of the herbal extract needed to make a perfect antidote depends on

the seriousness of the poison and whether the poison is type 0 or type 1. The

situation of S is more serious than that of R, and thus S always needs 3 grams

more of the herbal extract than R regardless of whether the poison is type 0 or

type 1. That is, we implement b = 3/5 = 0.6.

If the poison is type 0, R does not need any herbal extract to make a perfect

antidote. That means, S needs 3 grams for a perfect antidote. If the poison is

type 1, R needs all 5 grams of the herbal extract to make a perfect antidote.

That means, S needs 8 grams. Putting in too little or too much of the herbal

extract will result in pain (a utility loss). The larger the difference between

the exact amount needed and the actual amount taken, the more pain one will

suffer. Precisely, the payoff becomes

300 - 4 × [The exact amount needed – The actual amount taken]2 for S, and

300 - 12 × [The exact amount needed – The actual amount taken]2 for R.

The following table illustrates the possible payoffs for each player in different

scenarios.

They know that the poison is type 0 with a 30% chance and type 1 with a

70% chance. Thus, we have p = 0.7. S has a pair of magic glasses that tell him

privately whether the poison is type 0 or 1. They have limited time to make

only one bowl of antidote, but after the antidote is prepared they can use a

magic spell to quickly duplicate it such that each player can take a full cup (of
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Poison Type
Payoff for R Payoff for S

Type 0 Type 1 Type 0 Type 1
0 300 0 264 44

The Actual 1 288 108 284 104
Amount (gram) of 2 252 192 296 156

Herbal Extract 3 192 252 300 200
Taken 4 108 288 296 236

5 0 300 284 264

Table 1: Payoffs

identical antidote). The game unfolds as follows: First, for each round and for

each group, the type of poison is randomly drawn. Second, S wears his magic

glasses and privately learns the poison type. Third, S sends one of the following

messages to R:

“The poison is Type 0.” “The poison is Type 1.”

After receiving a message, R decides how many grams (between 0 and 5) of

the herbal extract to put in to make an antidote. Lastly, the antidote created

is duplicated. Each of R and S takes the antidote which exerts its effect fully

on each user. Finally, the outcomes, depending on the exact amount of herbal

extract needed and the actual amount taken, are realized.

4.2 Treatments and Procedure

Our experimental design is presented in Table 2 below which involves four treat-

ments. The experimental environment is adopted from the antidote game de-

scribed in Section 4.1. The welfare bounds are calculated with p = 0.7 and

b = 0.6 assuming that the subjects do not bring any intrinsic cursedness to the

lab. The exact calculations are provided in Online Appendix B.

The four treatments differ from each other with respect to 1) the degree of

controlled cursedness injected to the game and 2) whether the message sent by

the sender (S) is garbled or not.

Standard Talk (ST) Treatment. In this treatment, there were equal num-
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Treatment Cursedness (χ) Garbling (φ) Maximum Welfare (True R)
Standard Talk (ST) 0 0 234
Mediated Talk (MT) 0 0.9 282.96

Low Cursed (LC) 0.2 0 296.4
High Cursed (HC) 0.5 0 277.2

Table 2: Experimental Treatments

bers of S and R. At the beginning of each round, one S and one R were

randomly paired. They were randomly reshuffled after each round to form new

pairs. The roles were fixed throughout the official rounds of the experiment.

Participants knew their roles. The message sent by S was transmitted to the

paired R without garbling.

Mediated Talk (MT) Treatment. The roles and matching procedure in this

treatment are the same as those in Treatment ST but the procedure of message

transmission differs from it. When S sent the message “The poison is Type 0”,

the message was transmitted to the paired R. When S sends the message “The

poison is Type 1”, the message is garbled such that the paired R received the

original message “The poison is Type 1” with φ = 90% chance and the original

message “The poison is Type 0” with 10% chance.

Cursed (LC and HC) Treatments. The message transmission procedure in

this treatment is the same as that of Treatment ST but the roles and matching

procedure differ from it. There were three roles—S, True R, and False R—in

the cursed treatments. At the beginning of the experiment, X participants were

randomly assigned the role of S, another X the role of True R, and the rest (Y

people) the role of False R, where χ = Y
X+Y captures the degree of cursedness.

We set χ = 0.2 for Treatment LC and χ = 0.5 for Treatment HC such that

truth-telling is incentive-compatible in both treatments. The roles were fixed

throughout the experiment. At the beginning of the 1st official round, each

individual was informed whether the assigned role was S or not. If the role was

not S, then no further information about whether the role was True R or False R

was provided. Thus, the only thing they knew was that the chances were X
X+Y %

and Y
X+Y % that they were True R and False R, respectively. In each round, one
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S and one True R (who did not know if him/herself was True R or False R)

were randomly paired to form a group of two. They were randomly reshuffled

after each round to form new groups. Participants whose role was False R were

not paired with anyone but still received a message randomly chosen from all S

participants in the round of the session such that they could not tell they were

not paired.

All treatments shared the same feedback procedure. The end-of-each-round

feedback for the subjects whose role was S included whether the poison was

type 0 or 1, the exact amount of herbal extract needed for a perfect antidote,

the message S sent, the message R received, the actual amount of herbal extract

taken, and the earning. For the subjects whose role was R (True R or False R),

the feedback was provided only at the end of the 20th round, but not of other

rounds. This was to ensure that R had no way to update his/her belief about

the actual role he/she was assigned to.

We elicited the ex-ante ideal action under the prior belief before the official

rounds began. At Round 0, we asked every participant to play the role of R

and to decide what action to take without receiving any message from S. This

elicitation was fully incentivized as Round 0 can be chosen for the final payment.

The individual outcome from Round 0 was revealed to each participant at the

end of the round before he/she proceeded to the first official round.

We conducted four sessions for each of the ST and MT treatments, six

sessions for the LC treatment, and seven sessions for the HC treatment. Thus

we had 21 sessions in total. The number of True R participants was 31, 37, 48,

and 42 in ST, MT, LC, and HC treatment, respectively. We used the random-

matching protocol and between-subjects design. With three exceptions, every

session had 18 participants.6 Our experiment was conducted in English using

Zoom and oTree (Chen, Schonger, and Wickens, 2016) via the real-time online

mode at the Hong Kong University of Science and Technology (HKUST) where

turning on their camera was a strict requirement. A total of 370 subjects who

had no prior experience in our experiment were recruited from the graduate and

6One session for Treatment MT had 20 participants whereas Treatment ST had one session
with 12 participants and one session with 14 participants.

20



undergraduate populations of the university.

One round out of 20 official rounds and Round 0 (for the elicitation of the

ex-ante ideal action) was randomly chosen for the final payment. The total

payment in HKD was the payoff each subject earned in the selected round

plus an HKD 40 show-up fee. Subjects earned HKD 275 (≈ USD 35.25) by

participating in a session that lasted 70 minutes on average. The final earnings

were paid electronically via the HKUST Autopay System to the bank account

each participant provided to the Student Information System (SIS).

5 Hypotheses
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∎ For Treatments ST and LC, the cumulative distributions are drawn based on the
assumption that the receiver is uniformly randomizing between the two indifferent actions, 3
and 4.

Figure 1: Outcome - Theoretical Predictions

In cheap-talk games, the outcome is defined as a joint distribution over

the action space and the state (type) space. Figure 1 presents the theoretical
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predictions of the cumulative distributions of the receiver’s action conditional

on the state for each treatment. In each of Treatments ST and LC, the two

conditional cumulative distributions are identical because pooling is the unique

equilibrium outcome where the receiver is indifferent between actions 3 and

4. In each of the Treatments MT and HC, there is a truth-telling equilibrium

that leads to some degrees of separation in outcome depending on the exact

communication channel. Moreover, Lee, Lim, and Zhao (2023) shows that the

truth-telling equilibrium is the unique robust equilibrium that survives the NITS

condition proposed by Chen, Kartik, and Sobel (2008). Whether the outcome

is pooling or separating can be captured by the absence or presence of the first-

order-stochastic-dominance (FOSD) relationship between the two conditional

cumulative distributions.

To set a concrete testable hypothesis, we adopt the following measure of the

degree of separation. Let F,G be two cumulative distributions over the space

of actions Y = {0,1,2,3,4,5}. The degree of separation from F to G, denoted

as ∆(F,G), is given by

∆(F,G) = ∑
y∈Y

(F (y) −G(y))/5, (5.1)

In case that G first-order stochastically dominates F , then (i) ∆(F,G) is simply

the L1-metric between F and G normalized by a factor of 1/5, and (ii) ∆(F,G) ∈

[0,1], with ∆(F,G) = 1 if and only if F assigns all probability mass to action 0

and G assigns all probability mass to action 1.

We define the degree of separation in outcome, ∆O, as follows:

∆O = ∆(FO
0 , F

O
1 )

where FO
θ is the cumulative distribution of actions conditional on type θ ∈ {0,1}.

We will use ∆O
i to denote the degree of separation in outcome for Treatment

i, for i ∈ {ST, MT, LC, HC}. Thus, the outcome of Treatment i is said to be

more (less) separating than that of Treatment j if ∆O
i is larger (smaller) than
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∆O
j .7 It is straightforward to calculate that ∆O

ST = 0, ∆O
MT = 0.72, ∆O

LC = 0.8 and

∆O
HC = 0.4. Our first hypothesis is as follows:

Hypothesis 1 (Outcome).

(a) In each of Treatments MT, LC, and HC, the cumulative distribution of

receiver’s action conditional on type 0 first-order stochastically dominates

(FOSD) that conditional on type 1. There is no such FOSD relationship

in Treatment ST.

(b) ∆O
ST = 0 < ∆O

HC < ∆O
MT < ∆O

LC.

Our next hypothesis is about the sender strategy. As mentioned earlier,

the unique equilibrium in Treatment ST is babbling whereas the unique robust

equilibrium surviving the NITS condition in Treatments MT, LC, and HC is

truth-telling in terms of sender strategy.

Hypothesis 2 (Sender Strategy).

(a) The proportion of message “Type 1” conditional on type 1 is higher than

that conditional on type 0 in each of Treatments MT, LC, and HC. There

is no such difference in Treatment ST.

(b) The proportion of sender subjects using the separating strategy is larger in

each of Treatments MT, LC, and HC than that in ST.

Figure 2 presents the theoretical predictions of the cumulative distributions

of the receiver’s action conditional on the state for each treatment. Again,

whether the receiver is using a pooling or separating strategy can be captured

by the absence or presence of the first-order-stochastic-dominance (FOSD) re-

lationship between the two conditional cumulative distributions. Similarly, we

define the degree of separation in the receiver’s strategy, ∆R, as follows:

∆R = ∆(FR
0 , F

R
1 )

7A higher degree of separation does not necessarily imply a higher welfare measured by
the receiver’s payoff due to the larger (than the binary) action space and the quadratic loss
function we assumed. We will have a separate hypothesis on the welfare ranking later.
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Figure 2: Receiver Strategy (CDF) - Theoretical Predictions

where FR
m is the cumulative distribution of actions conditional on the message

“Type m” for m ∈ {0,1}. We will use ∆R
i to denote the degree of separation

in the receiver’s strategy for Treatment i, for i ∈ {ST, MT, LC, HC}. Thus,

the receiver’s strategy of Treatment i is said to be more (less) separating than

that of Treatment j if ∆R
i is larger (smaller) than ∆R

j . It is straightforward to

calculate that ∆R
ST = 0, ∆R

MT = ∆R
LC = 0.8, and ∆R

HC = 0.4. Our third hypothesis

is as follows:

Hypothesis 3 (Receiver Strategy).

(a) In each of Treatments MT, LC, and HC, the cumulative distribution of

receiver’s action conditional on “Type 0” first-order stochastically dom-

inates (FOSD) that conditional on “Type 1”. There is no such FOSD

relationship in Treatment ST.

(b) ∆R
ST = 0 < ∆R

HC < ∆R
MT = ∆R

LC.
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(c) The proportion of receiver subjects using the separating strategy is larger

in each of Treatments MT, LC, and HC than that in ST.

Note that neither ∆O nor ∆R fully captures the welfare generated by the

information transmission. The right measure is the payoff of the receiver as

presented in Table 2. Our last hypothesis thus states:

Hypothesis 4 (Welfare). True Rs’ average earnings are ranked as follows:

EUST < EUMT < EUHC < EULC.

6 Experimental Results

We report experimental results by comparing the outcomes from the four treat-

ments. Given that False Rs in the Cursed treatments (LC and HC) were intro-

duced to faithfully implement the environment in which the True Rs are cursed,

we only report outcomes generated by the True Rs in these two treatments. We

next report sender behavior and receiver behavior. When reporting the receiver

behavior, we use data from both False Rs and True Rs (whenever exist) because

they are ex-ante identical. We then turn to report results on welfare.

6.1 Outcome

Figure 3 presents the cumulative distributions of the receiver’s action condi-

tional on the state, aggregated across all 20 rounds of all four sessions of each

treatment.8 The versions with probability distributions are provided in Fig-

ure 10 (treatment level) and Figure 12 (session level) in Online Appendix D.

We compare these distributions for first-order stochastic dominance via the

non-parametric Barrett-Donald (BD) test procedure proposed by Barrett and

8We will use three types of aggregations of data. First, treatment level means that the
data is aggregated over all 20 rounds across all four sessions for each treatment. Second,
session level means that the data is aggregated over all 20 rounds for each session. Third,
individual level means that the data is aggregated over all 20 rounds for each individual.
Given that we did not provide any feedback to the receiver subjects in our experiments, it is
appropriate to look at the data aggregated across all 20 official rounds.
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Donald (2003).9 Tables 4-5 in Online Appendix E present all non-parametric

test results reported in this section.
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Figure 3: Outcome Comparison

One immediate observation across all treatments is that the cumulative dis-

tribution conditional on Type 0 is first-order stochastically dominated by that

conditional on Type 1. For each treatment, we cannot reject the Null that the

cumulative distribution conditional on Type 1 first-order stochastically domi-

nates that conditional on Type 0 (p-values < 0.003), while rejecting the reversed

Null (p-values > 0.8601). It implies that a strictly higher action is taken in type

1 than in type 0. This observation is true not only at the aggregated treatment

level but also at the session level. It implies that we have “over-communication”

in Treatment ST where theory predicts no first-order stochastic dominance re-

lationship between the two conditional distributions.10 Thus, we have to reject

9Given two distributions F and G, the BD procedure requires to test both Null hypotheses
F ≥ G and G ≥ F . F first-order stochastically dominates G if and only if F ≥ G but not G ≥ F
is accepted. For the p-values in each test, we employ a bootstrap of size 10,000.

10Over-communication is well documented in the cheap-talk literature. See Blume et al.
(2019b) for the most recent survey of the literature.
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Hypothesis 1(a) partially.

In spite of the first-order-stochastic-dominance relationship observed in all

treatments, it is apparent that the gap between the two conditional distributions

is larger in some treatments than others, implying that the degrees of separation

in outcome differ across treatments. The average ∆O scores are 0.0896, 0.154,

0.189, and 0.112 for Treatments, ST, MT, LC, and HC, respectively. Moreover,

the Mann-Whitney tests using session-level data as independent observations re-

veal that ∆O
LC is larger than ∆O

ST and ∆O
HC with the difference marginally signif-

icant (one-sided, p-values= 0.05714 and 0.0688, respectively). It turns out that

∆O is strictly below the theoretical values reported in the previous section for

Treatments MT, LC, and HC, implying that we have “under-communication”

in these three treatments. This observed under-communication phenomenon is

in sharp contrast to the over-communication phenomenon observed in ST. It is

challenging to reconcile these two contradictory observations.11

Result 1 (Outcome).

(a) In all four treatments, the cumulative distribution conditional on type 0 is

first-order stochastically dominated by that conditional on type 1.

(b) The outcome obtained in Treatment LC is more separating than those

obtained in Treatments ST and HC.

To understand the main source of the observed differences in outcomes, we

shall look at the sender behavior and receiver behavior more thoroughly in the

next subsections.

11In particular, it is surprising to see that the outcome obtained in Treatment HC is almost
perfect babbling because the theoretical environment guarantees the existence of truth-telling
equilibrium. The session-level outcome data presented in Figure 12 (Online Appendix D)
further illustrates that an almost perfect babbling outcome was obtained in Session 1 and an
outcome reasonably close to pooling was obtained in Sessions 3 and 4. To our knowledge, we
are one of a few exceptions in the literature to report behavior observed in the laboratory that
is more consistent with the babbling equilibrium prediction in the presence of a truth-telling
equilibrium. Blume, Lai, and Lim (2019a) report the laboratory data that the observed
behavior in the lab is more consistent with the non-truthful but informative equilibrium
predictions even when there is a truthful equilibrium.
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6.2 Sender Behavior

Figure 4 reports the treatment-level aggregated proportions for a sender to send

the message “The poison is Type 1” (shortly, “type 1” hereafter) conditional on

each type.12 Figure 13 in Online Appendix D provides the session-level data.
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Figure 4: Sender Strategy

Notice that the proportion of senders sending “type 1” conditional on type

1 is higher than that conditional on type 0 in all treatments. This observation

is not only true at the treatment level but also true at the session level. The

paired sample Wilcoxon signed-rank tests using session-level data as indepen-

dent observations reveal that the differences are statistically significant in all

treatments (one-sided, p-value= 0.0625 for Treatments ST and MT, 0.0156 for

Treatment LC, and 0.0078 for Treatment HC).13 This observation implies that

senders on average sent informative signals to receivers in all four treatments.

Thus, we have to partially reject Hypothesis 2(a) for Treatment ST.

The informativeness of senders’ messages, however, is not the same across

treatments. The Mann-Whitney tests using session-level data as independent

observations indicate that the proportions of senders sending “type 1” condi-

tional on type 0 are significantly larger in Treatment ST than in Treatments

MT, LC, and HC (one-sided, p-values= 0.0571, 0.0048 and 0.0212, respectively).

12We follow the convention of adding double-quotation marks to distinguish states (type
0 and type 1) from messages (“type 0” and “type 1”).

13For the Wilcoxon signed-rank tests, the one-sided p-value= 0.0625 is the lowest possi-
ble value for four paired observations. So we adopt it as the threshold for the statistical
significance.
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At the same time, the proportions of senders sending “type 1” conditional on

type 1 across all four treatments are not statistically different from each other

(two-sided, p-values> 0.1714). Combining these two observations implies that

the senders’ messages are significantly less informative in Treatment ST than

in each of Treatments MT, LC, and HC.

We conduct an additional analysis on the informativeness of senders’ mes-

sages using individual-level data as follows. First, we calculate the proportion

for each individual sender subject to send “type 1” conditional on type 1 and

that conditional on type 0. The larger the difference, the more separating the

strategy the sender subject is using. For example, the truth-telling (separating)

strategy should generate a difference of 1 while the fully babbling (pooling)

strategy should generate a difference of 0. Second, we classify each individual

sender subject as a separating category if the calculated difference is larger than

a cutoff. Similarly, we classify each individual sender subject as a pooling cat-

egory if the calculated difference is smaller than a cutoff. As the cutoff for the

separating (pooling) category becomes higher, the proportion of sender subjects

in the separating (pooling) category weakly decreases (increases).

Figure 5 reports results from the individual-level analysis. The horizontal

axis of each panel indicates the different cutoffs employed for the separating

category (first row) and the pooling category (second row). The black area at

the top shows the proportion of individual sender subjects who belong to the

separating category. The dark gray area at the bottom shows the proportion of

individual sender subjects who belong to the pooling category. The light-gray

area in-between indicates the proportion of subjects who belong to neither of

them. For example, looking at the top-left panel of Figure 5 for Treatment

ST, when the cutoff values are 0.5 and 0.5 for both separating and pooling

categories, the figure shows that the proportions are 13% for separating and 87%

for pooling. As we move to the right, the cutoff for separating increases, and that

for pooling decreases with the increment of 0.1. As a result, the proportions for

both separating and pooling categories decrease (weakly) monotonically while

more subjects are classified as “neither”. Note that the difference between the

two rightmost columns in each panel is whether to include 1 for separating
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Figure 5: Sender Strategy - Individual Classification

and 0 for pooling (the second rightmost column) or not (the first rightmost

column). Thus, the difference in proportion between these two columns reveals

the proportions of subjects using the fully truthful strategy and the complete

babbling strategy, respectively.14

We say that senders in Treatment A use a separating strategy more than

those in Treatment B if 1) the proportion of sender subjects classified as sep-

arating is larger in Treatment A than in Treatment B and 2) the proportion

classified as pooling is smaller in Treatment A than in Treatment B regardless

of the cutoff one adopts. For a statistical test, we take the distributions of the

proportions of sender subjects classified as separating/pooling with the sup-

port {0,0.1, ..,0.9,1} for different cutoffs employed ({0, ...,0.5} for pooling and

14By definition, the area below the white horizontal line indicates the proportion of those
who use the non-monotonic strategy, i.e., Pr(“Type 1”∣Type 1)<Pr(“Type 1”∣Type 0). In our
classification exercise, we classify those subjects using a non-monotonic strategy as pooling,
because the vast majority of senders are following the literal meaning of the message in their
message strategy and the modal receiver’s response is also monotonic.
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{0.5, ...,1} for separating)15 and compare them with respect to the first-order

stochastic-dominance using the BD test. The test confirms that senders in

Treatment ST use a pooling strategy significantly more and a separating strat-

egy significantly less than those in Treatments LC and HC (p-values = 0.0038

and 0.0030 for the Null and p-value = 0.9317 and 0.9207 for the reversed Null

hypothesis). Moreover, senders in Treatment ST use a pooling strategy more

and separating strategy less than those in Treatments MT with marginal sta-

tistical significance (p-values = 0.0741 for the Null and p-values = 0.9236 for

the reversed Null hypothesis). The BD tests further reveal that no other pairs

have a FOSD relationship. Partially accepting Hypothesis 2(b), these results

are summarized as follows.

Result 2 (Sender Strategy).

(a) In all treatments, the proportion of message “Type 1” conditional on type

1 is higher than that conditional on type 0 in all treatments.

(b) Senders in Treatments LC, MT and HC use a separating strategy more

and pooling strategy less than those in Treatment ST.

The overall sender’s strategy observed in Treatment HC being quite infor-

mative seems a bit contradictory to the near-pooling outcome in Treatment HC

reported in the previous section. There are two caveats. First, the outcome is

generated by both the sender’s behavior and the receiver’s behavior. Second,

given the high degree of cursedness we injected into the treatment, it is not

difficult to imagine that the receiver behavior is more likely to be less separat-

ing. The next subsection provides data for receiver behavior which allows us to

confirm or reject this preliminary conjecture.

6.3 Receiver Behavior

Figure 6 presents the cumulative distributions of the receiver’s action conditional

on the message, aggregated across all 20 rounds of all four sessions of each

15Graphically, the distribution can be obtained by flipping the pooling curve in Figure 5
around the vertical axis and combine it with the separating curve.
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treatment. The versions with probability distributions are provided in Figure

14 (treatment level) and Figure 16 (session level) in Online Appendix D.16
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Figure 6: Receiver Strategy

Consistent with the outcome data, we also observe a clear first-order-stochastic

dominance relationship between the two conditional distributions in all treat-

ments. The BD test reveals that the first-order stochastic dominance relation-

ship is significant in all treatments (p-values < 0.0001 for the Null and p-values

> 0.8761 for the reversed Null hypothesis). Moreover, the gaps between the two

conditional distributions are substantially larger than what we have observed

in the outcome data in Section 6.1. This observation indicates that substan-

tial proportions of receiver subjects may use separating strategies in all our

treatments. We thus have to reject Hypothesis 3(a) for Treatments ST and LC.

Again, it is apparent that the gap between the two conditional distributions

is larger in some treatments than in others. The average ∆R scores are 0.431,

0.519, 0.456, and 0.282 for Treatments, ST, MT, LC, and HC, respectively. The

16In Treatments LC and HC, there are two types of receivers, True R and False R. When
making their decisions, they did not know if their role was True R or False R. Thus, we do
not distinguish between the two roles for our data analysis in this section.
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Mann-Whitney tests using session-level data as independent observations reveal

that ∆R
HC are marginally or significantly smaller than each of ∆R

ST, ∆R
MT, and

∆R
LC (one-sided, p-values= 0.0818, 0.0303, and 0.0023, respectively).
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Figure 7: Receiver Strategy - Individual Classification

We conduct additional analysis on the degree of separation in the receiver’s

strategy using individual-level data as follows. First, we calculate the average

action taken by each individual receiver subject conditional on receiving the

message “type 1” and that conditional on the message “type 0”. The larger the

difference, the more separating the strategy the receiver subject is using. For

example, the fully separating strategy should generate a difference of 5 while

the fully pooling strategy should generate a difference of 0. Second, we clas-

sify each individual receiver subject as a separating category if the calculated

difference is larger than a cutoff. Similarly, we classify each individual receiver

subject as a pooling category if the calculated difference is smaller than a cutoff.

As the cutoff for the separating (pooling) category becomes higher, the propor-

tion of receiver subjects in the separating (pooling) category weakly decreases

(increases).
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Figure 7 presents the results from the individual-level analysis. The horizon-

tal axis of each panel indicates the different cutoffs for the separating category

(first row) and the pooling category (second row). The black area at the top

shows the proportion of individual receiver subjects who belong to the sepa-

rating category. The dark gray area at the bottom shows the proportion of

individual receiver subjects who belong to the pooling category. The light-gray

area in-between indicates the proportion of subjects who belong to neither of

them. For example, looking at the bottom-right panel of Figure 7 for Treatment

HC, when the cutoff values are 2.5 and 2.5 for both separating and pooling cate-

gories, the figure shows that the proportions are 26% for separating and 74% for

pooling. As we move to the right, the cutoff for separating increases, and that

for pooling decreases with the increment of 0.5. As a result, the proportions for

both separating and pooling categories decrease (weakly) monotonically while

more subjects are classified as “neither”. Note that the difference between the

two rightmost columns in each panel is whether to include 5 for separating and

0 for pooling (the second rightmost column) or not (the first rightmost col-

umn). Thus, the difference in proportion between these two columns reveals

the proportions of subjects using a fully separating strategy and a fully pooling

strategy.17

The BD tests confirm that receivers in Treatment HC use a separating strat-

egy significantly less and a pooling strategy significantly more than those in

Treatments ST, MT, and LC (p-values = 0.0119, 0.0001, and 0.0076 for the Null

and p-values = 0.9558, 0.9665, and 0.8825 for the reversed Null hypothesis). The

BD tests further reveal that no other pairs have a FOSD relationship. Partially

accepting Hypothesis 3, these results are summarized as follows:

Result 3 (Receiver Strategy).

(a) In all treatments, the cumulative distribution of receiver’s action condi-

17By definition, the area below the white line reveals the proportion of those who use the
non-monotonic strategy, i.e., E[Action∣“Type 1”] < E[Action∣“Type 0”]. In our classification
exercise, we classify those subjects using a non-monotonic strategy as pooling, because the
vast majority of Receivers are following the literal meaning of the message in their action
strategy and the modal sender strategy is also monotonic.
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tional on “Type 0” first-order stochastically dominates (FOSD) that con-

ditional on “Type 1”.

(b) ∆R
HC < ∆R

ST, ∆R
MT, and ∆R

LC.

(c) Receivers in Treatment HC use a pooling strategy more and separating

strategy less than those in Treatments ST, MT and LC.

This result is not driven by a difference in subjects’ degree of understand-

ing/comprehension of the instructions. Figure 17 in Online Appendix D shows

that the distributions of actions taken by participants in Round 0 under the

prior belief (when receiving no message from a sender) are almost identical

across treatments. Indeed, the Kolmogorov-Smirnov (KS) tests using the indi-

vidual data as independent observations confirm that the distributions are not

significantly different from each other (two-sided, p-values > 0.6227).

6.4 Welfare

Figure 8 reports the average earnings of True Rs in each treatment. Figure

19 in Online Appendix D provides the session-level earning data. The average

earning for True Rs is highest in Treatment LC and lowest in Treatment ST.

The MW tests show that the average earning for True Rs is significantly lower

in Treatment ST than that in each of Treatments MT, LC, and HC (one-sided,

p-values = 0.0143, 0.0571, and 0.0121, respectively). The MW tests further show

that the average earning for True Rs is higher in Treatment LC than that in

each of Treatments ST, MT, and HC (one-sided, p-values = 0.0571, 0.0857, and

0.1474, respectively) although the difference is either only marginally significant

or statistically insignificant. As presented in Figure 18 in Online Appendix D,

for each of Treatments LC and HC, the average earnings for False Rs seem

substantially smaller than those for True Rs, although the differences are not

statistically significant.

Result 4 (Earnings). True Rs’ average earning is significantly smaller in Treat-

ment ST than in each of Treatments MT, LC, and HC. Moreover, True Rs’
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average earning is higher in Treatment LC than in each of Treatments ST, MT,

and HC, although the differences are not significant.

To summarize, our experimental data confirm that cursedness is an effective

information-garbling device that improves social welfare upon direct commu-

nication. We further observe two contradictory phenomena: the typical over-

communication in Treatment ST and the unfamiliar under-communication in

Treatments MT, LC, and HC, in which over- and under-communication are

defined relative to the most informative equilibrium in the corresponding en-

vironment. Moreover, True Rs in HC use a separating strategy less frequently

and a pooling strategy more frequently than those in ST, despite the fact that

the truth-telling equilibrium exists in HC but not in ST. The observed under-

communication cannot be rationalized by merely introducing a truth-telling

preference or lying cost. A level-k model a la Crawford (2003) in which the

level-0 sender is assumed to be truthful also fails to rationalize our experimen-

tal data.18 In the next section, we assume that our experimental participants

may bring some intrinsic cursedness to the lab and explore whether a sensible

distribution of intrinsic cursedness could account for the observed departure

from the theoretical predictions.

18The assumption that the naivety of level-0 senders is modeled as truthful is well-accepted
in the cheap-talk literature. Online Appendix F presents predictions from the level-k model.
In any level above zero, the unique prediction is that the sender babbles in Treatment ST and
tells the truth in all three other treatments. With the assumption of truthful level-0 senders,
the best-response structure of the level-k model leaves no room for the receiver to not fully
comprehend the information provided by the sender.
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7 Intrinsic Cursedness

Assume that subjects may have brought some intrinsic cursedness to the ex-

periments in addition to the cursedness induced by introducing fictitious R’s.

Let χ0 denote the subject’s intrinsic cursedness. Then, the effective cursedness

subjects exhibit in the experiments, denoted as χ̂, would be given by

χ̂ = 1 − (1 − χ)(1 − χ0) = χ + χ0 − χχ0,

in which χ is the induced cursedness in the experiment. Table 3 summarizes

the receiver’s optimal strategy in the separating equilibrium as a function of the

intrinsic cursedness χ0 in the strategic communication game. In addition, the

range of χo that supports the separating equilibrium in each treatment is listed

in the last column.19 In the table, ⌊x⌋ denotes the largest integer that does not

exceed x. We need this operator since the action space is discretized.

Treatment χ̂ p Given “1” Given “0” Range of χ0

ST χ0 0 ⌊5.5 − 1.5χ0⌋ ⌊0.5 + 3.5χ0⌋ [1
7 ,

1
3] ∪ [3

7 ,1)
MT χ0 0.1 ⌊5.5 − 1.5χ0⌋ ⌊107

74 + 189
74 χ0⌋ [0,1)

LC 0.2 + 0.8χ0 0 ⌊5.2 − 1.2χ0⌋ ⌊1.2 + 2.8χ0⌋ [0, 1
6] ∪ [2

7 ,1)
HC 0.5 + 0.5χ0 0 ⌊4.75 − 0.75χ0⌋ ⌊2.25 + 1.75χ0⌋ [0,1)

Table 3: Receiver’s Optimal Responses in the Most Informative Equilibrium

Based on Table 3, we conduct a simple calibration exercise as follows. We

assume that χ0 follows a truncated normal distribution over [0,1]. We say

that a distribution of the intrinsic cursedness χ0 rationalizes our data if its

theoretical predictions meet the following three criteria: 1) welfare is lowest

in Treatment ST (ST criterion); 2) welfare is highest in Treatment LC (LC

criterion); and 3) the degree of separation in the receiver’s actions is lowest

in Treatment HC (HC criterion). The left panel of Figure 9 illustrates the

range of mean (horizontal axis) and variance (vertical axis) of the truncated

normal distribution, which χ0 follows, that rationalizes our data. This graph

demonstrates that a concentration of χ0 around 0.46 can rationalize our data.

19We present the exact calculations in Online Appendix C.
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Figure 9: Compatible Normal Distributions with (Left) and Without (Right) the LC
Criterion

Furthermore, when the variance exceeds a certain threshold (greater than 0.46),

the range of means that can rationalize our data consistently expands. This

finding suggests that incorporating individual heterogeneity in the degree of

intrinsic cursedness makes it easier to rationalize our data. The right panel

of Figure 9 exhibits the range of mean and variance values for χ0 that can

rationalize our data while disregarding the LC criterion. This is motivated by

the fact that the welfare in Treatment LC is not statistically different from

that in Treatment MT. The results demonstrate a considerably wider range,

indicating that it is much easier to rationalize our data without applying the

LC criterion.

Our finding that χ0 concentrated around 0.46 can rationalize the experi-

mental data aligns with the results of Szembrot (2018), who estimated a sim-

ilar degree of intrinsic cursedness to be 0.45. However, the empirical analysis

conducted by Eyster and Rabin (2005) suggests that the estimated degrees of

intrinsic cursedness in trading games and common value auctions are generally

higher than 0.45, displaying a significant level of individual heterogeneity.

We believe that this discrepancy may be attributed to the explicit nature of

the correlation between the sender’s strategy and their private information in

both our communication game and the signaling game examined in Szembrot
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(2018), compared to other types of games.20 In our view, the participants’ belief

hierarchy about how cursed each of them is can drastically affect their behavior

in the game. For example, a bidder in a common value English auction may

perceive other bidders to be less cursed than they really are, and thus, she may

bid higher and appear to be more cursed.
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Online Appendices

A Optimal Mediation with a Cursed Receiver

Simple algebra yields that under any feasible µ(θ∣0) and µ(θ∣1),

∑
θ∈ΘS

Eµ[−(y − θ)2∣θ]π(θ) = −(1 + χ)(1 − p)Eµ[y∣0] + χp(1 − p). (A.1)

Thus, the optimal mediation problem can be reduced to the following:

min
µ(⋅∣0),µ(⋅∣1)

Eµ[y∣0]

subject to 0 ≤ Eµ[(y − b)2∣1] −Eµ[(y − b)2∣0] ≤ 2(Eµ[y∣1] −Eµ[y∣0])

y = χp + (1 − χ) pµ(y∣1)
pµ(y∣1) + (1 − p)µ(y∣0) , if pµ(y∣1) + (1 − p)µ(y∣0) > 0.

Note that since

Eµ[y∣0] = χp + (1 − χ)Eµ [ pµ(y∣1)
pµ(y∣1) + (1 − p)µ(y∣0)∣0] ≥ χp,

the separating equilibrium, if exists, is a feasible mediated equilibrium and achieves the welfare

bound. Hence, if b ≤ 1−χ
2 + χp, no additional mediation is needed and the ex-ante welfare under

optimal mediation is −χ2p(1 − p).

Now suppose b > 1−χ
2 + χp. To further analyze the optimal mediation problem, we need a

series of lemmas. Let y = χp + (1 − χ) and y = χp. For the simplicity of exposition, we will write

µ0, µ1,Eµ0[⋅], and Eµ1[⋅] instead of µ(⋅∣0), µ(⋅∣1),Eµ[⋅∣0], and Eµ[⋅∣1], respectively.

Lemma 1. If (µ0, µ1) satisfies the receiver’s IC constraint, so does α(µ0, µ1) + (1 − α)(δy, δy) for

any α ∈ [0,1].

Proof. When α = 1 the claim is trivial. Suppose α ∈ [0,1). Let (ν0, ν1) = α(µ0, µ1)+ (1−α)(δy, δy).
Suppose pµ1(y) + (1 − p)µ0(y) > 0. Then for (µ0, µ1) to satisfy the receiver’s IC, we need

0 =
pµ1(y)

pµ1(y) + (1 − p)µ0(y)
,

which implies that µ1(y) = 0. When pµ1(y) + (1 − p)µ0(y) = 0, we also have µ1(y) = 0.

Thus, by construction, ν1(y) = 0, which implies that

y = χp + (1 − χ)
pν1(y)

pν1(y) + (1 − p)ν0(y)
.
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Similarly, we have

y = χp + (1 − χ) pν1(y)
pν1(y) + (1 − p)ν0(y)

.

Thus (ν0, ν1) satisfies the receiver’s IC.

Lemma 2. Suppose b > 1−χ
2 + χp. If (µ0, µ1) is a solution to the optimal mediation problem, then

Eµ1[(y − b)2] = Eµ0[(y − b)2].

Proof. Let (µ0, µ1) be a solution to the problem. When b > 1−χ
2 + χp, the separating equilibrium

cannot be sustained. It follows that Eµ0[y] > y = χp. By way of contradiction assume Eµ1[(y−b)2] >
Eµ0[(y − b)2]. Consider ν0 = αµ0 + (1 − α)δy and ν1 = αµ1 + (1 − α)δy for some α ∈ (0,1).

Since b > 1−χ
2 + χp, we have

(y − b)2 − (y − b)2 < 0 < 2(y − y).

Thus, since (µ0, µ1) is feasible, we have

Eν1[(y − b)2] −Eν0[(y − b)2] ≤ 2(Eν1[y] −Eν0[y]).

Thus, if Eµ1[(y − b)2] > Eµ0[(y − b)2], we can pick α ∈ (0,1) such that

α(Eµ1[(y − b)2] −Eµ0[(y − b)2]) + (1 − α)((y − b)2 − (y − b)2) = 0.

Furthermore, we know that

Eν0[y] = αEµ0[y] + (1 − α)y < Eµ0[y].

The corresponding (ν0, ν1) is thus feasible and achieves a higher level of welfare than (µ0, µ1), a

contradiction.

By the previous lemma, if b > 1−χ
2 + χp, the optimal mediation problem reduces to

min
µ0,µ1

Eµ0[y]

subject to Eµ0[(y − b)2] = Eµ1[(y − b)2]

Eµ0[y] ≤ Eµ1[y]

y = χp + (1 − χ) pµ1(y)
pµ1(y) + (1 − p)µ0(y)

, if pµ1(y) + (1 − p)µ0(y) > 0.

The following proposition summarizes the solution to the optimal mediation problem.
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Proposition 4. When b ≤ y+y
2 , optimal mediation induces the separating equilibrium. When b ≥

y+p
2 , optimal mediation induces the babbling equilibrium. When

y+y
2 < b < y+p

2 , it is optimal for the

mediator to recommend 2b−y when θ = 0; recommend y with probability φ and 2b−y with probability

1 − φ, in which

φ = p − 2b + y
2p(y − b) . (A.2)

In this case, the ex-ante welfare of the receiver under optimal mediation is (1 − p)[(1 − χ − 2b)(1 +
χ) + χ(2 + χ)p].

Proof. From the sender’s point of view, if (µ0, µ1) is feasible, the ex ante welfare is

(1 − p)Eµ0[−(y − b)2] + pEµ1[−(y − 1 − b)2]

= Eµ0[−(y − b)2] + p(Eµ1[−(y − 1 − b)2] −Eµ1[−(y − b)2])

= Eµ0[−(y − b)2] + 2pEµ1[y] − p(2b + 1)

= Eµ0[−(y − b)2] + 2(p − (1 − p)Eµ0[y]) − p(2b + 1)

= Eµ0[−(y − b)2] − 2(1 − p)Eµ0[y] − p(2b − 1),

which, together with (A.1) and the fact that the sender’s ex ante welfare will be b2 lower than the

receiver’s, yields

−(1 + χ)(1 − p)Eµ0[y] + χp(1 − p) − b2 = Eµ0[−(y − b)2] − 2(1 − p)Eµ0[y] − p(2b − 1). (A.3)

Let yθ = Eµθ[y] and σ2
θ = varµθ(y). The equation above reads

σ2
0 = (p − y0)(y0 + 1 − χ + χp − 2b). (A.4)

It follows from (A.3), y1 ≥ y0, p = py1 + (1 − p)y0, and σ2
0 ≥ 0, that

y0 ≥ 2b − 1 + χ − χp = 2b − y. (A.5)

Since we need y0 ≤ p, if 2b − y ≥ p, i.e. b ≥ y+p
2 , then optimal mediation induces the babbling

equilibrium.

Suppose
y+y

2 < b < y+p
2 . Then by (A.1) and (A.5), the receiver’s ex ante welfare cannot be strictly

larger than

−(1 + χ)(1 − p)(2b − y) + χp(1 − p) = (1 − p)[(1 − χ − 2b)(1 + χ) + χ(2 + χ)p]. (A.6)
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To show that the upper bound is tight, we now construct the optimal policy. Let y0 = 2b − y. It

follows that σ2
0 = 0. Hence if θ = 0, the mediator always recommends y0. If θ = 1, for the receiver’s

IC to hold, the mediator can only recommend y0 or y. Suppose the mediator recommends y with

probability φ, we need

p((1 − φ)y0 + φy) + (1 − p)y0 = p

which reads

φ = p − y0

p(y − y0)
.

Verify that

χp + (1 − χ) p(1 − φ)
p(1 − φ) + 1 − p = 2b − y = y0.

Thus, the receiver’s IC is satisfied. It suffices to check that the sender’s IC is satisfied, which is

trivial. Thus, the bound is tight.

B Calculations for Table 2

In all treatments, in the babbling equilibrium, True R is indifferent between picking 3 or 4. No

matter how True R randomizes, the expected payoff is EU = 0.3 × 192 + 0.7 × 252 = 234.

In Treatment ST, only the babbling equilibrium exists. Thus, the welfare bound is 234.

In Treatment MT, suppose the separating equilibrium exists. Then the Bayesian updates

conditioning on the messages are respectively Pr(θ = 1∣m = 1) = 1 and Pr(θ = 1∣m = 0) = 7
37 . Thus

the corresponding best responses from True R will be 5 and 1, respectively. Since 5+1 ≥ 6, separation

is incentive compatible. Thus, the welfare bound is EU = 0.3×288+0.7×(0.9×300+0.1×108) = 282.96.

In Treatment LC, suppose the separating equilibrium exists. Given message m = 1, the receiver’s

posterior is 1 × 0.8 + 0.7 × 0.2 = 0.94, and thus 5 will be picked; given message m = 0, the receiver’s

posterior is 0×0.8+0.7×0.2 = 0.14, and thus 1 will be picked. Since 5+1 ≥ 6, separation is incentive

compatible. Thus, the welfare bound is EU = 0.3 × 288 + 0.7 × 300 = 296.4.

In Treatment HC, suppose the separating equilibrium exists. Given messagem = 1, the receiver’s

posterior is 1 × 0.5 + 0.7 × 0.5 = 0.85, and thus 4 will be picked; given message m = 0, the receiver’s

posterior is 0×0.5+0.7×0.5 = 0.35, and thus 2 will be picked. Since 4+2 ≥ 6, separation is incentive

compatible. Thus, the welfare bound is EU = 0.3 × 252 + 0.7 × 288 = 277.2.

4



C Calculations for Table 3

Given x ∈ R, let ⌊x⌋ denote the greatest integer less than or equal to x. When there is a tie from

the receiver’s point of view, assume that the larger action will be chosen for simplicity.

We consider ST, LC, and HC first. In the separating equilibrium, given message “1”, the

receiver’s posterior is 1 ⋅ (1 − χ̂) + 0.7 ⋅ χ̂ = 1 − 0.3χ̂, and thus action ⌊5.5 − 1.5χ̂⌋ will be chosen;

given message “0”, the receiver’s posterior is 0 ⋅ (1 − χ̂) + 0.7 ⋅ χ̂ = 0.7χ̂, and thus action ⌊3.5χ̂ + 0.5⌋
will be chosen. The separating equilibrium can be sustained if ⌊5.5 − 1.5χ̂⌋ + ⌊3.5χ̂ + 0.5⌋ ≥ 6 and

⌊5.5 − 1.5χ̂⌋ > ⌊3.5χ̂ + 0.5⌋, which yields χ̂ ∈ [1
7 ,

1
3] ∪ [3

7 ,1). Outside this range, only the pooling

equilibrium can be sustained.

Now consider MT. The Bayesian updates conditioning on the messages are respectively Pr(θ =
1∣m = 1) = 1 and Pr(θ = 1∣m = 0) = 7

37 . Thus, given message“1”, the receiver’s posterior is

1 ⋅ (1 − χ̂) + 0.7 ⋅ χ̂ = 1 − 0.3χ̂, and thus action ⌊5.5 − 1.5χ̂⌋ will be chosen; given message “0”, the

receiver’s posterior is 7
37 ⋅(1−χ̂)+0.7⋅χ̂ = 70+189χ̂

370 , and thus action ⌊107+189χ̂
74 ⌋ will be chosen. Incentive

compatibility is always ensured. We just need χ̂ < 1.
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D Additional Figures and Tables
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6



0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: S

T S
ess

ion
 1

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: M

T S
ess

ion
 1

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: LC

 Se
ssi

on
 1

Ty
pe

 0 
Ty

pe
 1

0%50
%

10
0%

0
1

2
3

4
5

Ou
tco

me
: H

C S
ess

ion
 1

Ty
pe

 0 
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: S

T S
ess

ion
 2

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: M

T S
ess

ion
 2

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: LC

 Se
ssi

on
 2

Ty
pe

 0 
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: H

C S
ess

ion
 2

Typ
e 0

 
Typ

e 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: S

T S
ess

ion
 3

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: M

T S
ess

ion
 3

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: LC

 Se
ssi

on
 3

Typ
e 0

 
Typ

e 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: H

C S
ess

ion
 3

Typ
e 0

Typ
e 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
 : S

T S
ess

ion
 4

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: M

T S
ess

ion
 4

Ty
pe

 0
Ty

pe
 1

0%20
%

40
%

60
%

0
1

2
3

4
5

Ou
tco

me
: LC

 Se
ssi

on
 4

Typ
e 0

 
Typ

e 1

0%50
%

10
0%

0
1

2
3

4
5

Ou
tco

me
: H

C S
ess

ion
 4

Ty
pe

 0 
Ty

pe
 1

F
ig

u
re

12
:

O
u
tc

om
e

C
om

p
ar

is
on

:
S
es

si
on

L
ev

el

7



78%
73% 73%

80%

99%

87%

74%

95%

0%

20%

40%

60%

80%

100%

Session 1 Session 2 Session 3 Session 4

Pr
op

or
tio

n

Treatment ST 
Sender Strategy: Session Level

Pr("Type 1" | Type 0) Pr ("Type 1" | Type 1)

49%
57% 56%

39%

98%
92% 94% 98%

0%

20%

40%

60%

80%

100%

Session 1 Session 2 Session 3 Session 4

Pr
op

or
tio

n

Treatment LC 
Sender Strategy: Session Level

Pr("Type 1" | Type 0) Pr ("Type 1" | Type 1)

64%

45%

73%

58%

94% 92%
99% 99%

0%

20%

40%

60%

80%

100%

Session 1 Session 2 Session 3 Session 4

Pr
op

or
tio

n

Treatment MT 
Sender Strategy: Session Level

Pr("Type 1" | Type 0) Pr ("Type 1" | Type 1)

62%

49%

79%

55%

95% 93% 96% 97%

0%

20%

40%

60%

80%

100%

Session 1 Session 2 Session 3 Session 4

Pr
op

or
tio

n

Treatment HC 
Sender Strategy: Session Level

Pr("Type 1" | Type 0) Pr ("Type 1" | Type 1)

Figure 13: Sender Strategy: Session Level

24% 23%

31%

18%

3% 1%

21%
25%

46%

7%
2% 0%

28%

20%

33%

17%

2% 1%

16%

23%

31%

24%

1%
5%

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

Pr
op

or
tio

n

Action

Receiver's Action | "Type 0"

ST MT LC HC

1% 2%
6%

35%
28% 28%

0% 0% 3%

32%

23%

41%

3% 1% 4%

37% 37%

18%

0% 1%
5%

61%

24%

9%

0%

15%

30%

45%

60%

75%

0 1 2 3 4 5

Pr
op

or
tio

n

Action

Receiver's Action | "Type 1"

ST MT LC HC

Figure 14: Receiver Strategy: Aggregate Level

8



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5
ACTION

Cummulative Distributions of 
Receiver's Action | "Type 0"

ST

MT

LC

HC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5
ACTION

Cummulative Distributions of 
Receiver's Action | "Type 1"

ST

MT

LC

HC

Figure 15: Receiver Strategy (CDF): Aggregate Level

9



50
%

30
%

10
%

10
%

0%
0%

13
%

34
%

34
%

9%
9%

0%

11
%

11
%

46
%

32
%

0%
0%

59
%

24
%

6%
6%

0%
6%

0%20
%

40
%

60
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 ST
 -R

ec
eiv

er
's 

Ac
tio

n |
 "T

yp
e 0

" (
Se

ssi
on

 Le
ve

l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

19
%

6%

68
%

6%
0%

0%

39
%

41
%

20
%

0%
0%

0%

11
%

26
%

57
%

6%
0%

0%
5%

24
%

48
%

17
%

7%
0%

0%25
%

50
%

75
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 M
T -

Re
ce

ive
r's

 A
cti

on
 | 

"T
yp

e 0
" (

Se
ssi

on
 Le

ve
l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

15
%

22
%

41
%

22
%

0%
0%

21
%

16
%

34
%

26
%

3%
0%

48
%

8%

28
%

15
%

0%
3%

22
%

41
%

30
%

4%
4%

0%
0%20

%

40
%

60
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 LC
 - R

ec
eiv

er
's 

Ac
tio

n |
 "T

yp
e 0

" (
Se

ssi
on

 Le
ve

l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

10
%

6%

16
%

65
%

3%
0%

15
%

23
%

40
%

8%
0%

13
%

25
%

21
%

33
%

21
%

0%
0%

17
%

36
%

29
%

17
%

2%
0%

0%25
%

50
%

75
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 H
C 

- R
ec

eiv
er

's 
Ac

tio
n |

 "T
yp

e 0
" (

Se
ssi

on
 Le

ve
l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

3%
2%

10
%

19
%

13
%

54
%

0%
1%

6%

34
%

55
%

3%
0%

1%
5%

65
%

18
%

11
%

2%
2%

4%

29
%

18
%

45
%

0%25
%

50
%

75
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 ST
 -R

ec
eiv

er
's 

Ac
tio

n |
 "T

yp
e 1

" (
Se

ssi
on

 Le
ve

l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

0%
0%

5%

59
%

9%

28
%

0%
0%

1%

14
%

17
%

69
%

0%
0%

3%

30
%

39
%

27
%

1%
1%

1%

26
%

26
%

46
%

0%25
%

50
%

75
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 M
T -

Re
ce

ive
r's

 A
cti

on
 | 

"T
yp

e 1
" (

Se
ssi

on
 Le

ve
l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

0%
0%

0%

29
%

48
%

23
%

0%
1%

9%

46
%

31
%

14
%

10
%

3%

10
%

33
%

26
%

19
%

1%
2%

0%

42
%

40
%

14
%

0%20
%

40
%

60
%

0
1

2
3

4
5

Proportion
Ac

tio
n

Tre
at

me
nt

 LC
 - R

ec
eiv

er
's 

Ac
tio

n |
 "T

yp
e 1

" (
Se

ssi
on

 Le
ve

l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

0%
0%

10
%

84
%

5%
0%

0%
2%

7%

36
%

38
%

16
%

1%
1%

1%

63
%

23
%

11
%

0%
0%

2%

60
%

30
%

8%

0%30
%

60
%

90
%

0
1

2
3

4
5

Proportion

Ac
tio

n

Tre
at

me
nt

 H
C 

- R
ec

eiv
er

's 
Ac

tio
n |

 "T
yp

e 1
" (

Se
ssi

on
 Le

ve
l)

Se
ssi

on
 1

Se
ssi

on
 2

Se
ssi

on
 3

Se
ssi

on
 4

F
ig

u
re

16
:

R
ec

ei
ve

r
A

ct
io

n
(S

es
si

on
L

ev
el

)
C

on
d
it

io
n
al

U
p

on
“T

y
p

e
0”

(L
ef

t)
an

d
U

p
on

“T
y
p

e
1”

(R
ig

h
t)

10



3% 0%
5%

63%

18%
11%

0% 3%
7%

58%

18% 15%

1% 1% 4%

57%

21%
15%

0% 0%
8%

58%

24%

10%

0%

15%

30%

45%

60%

75%

0 1 2 3 4 5

Pr
op

or
tio

n

Action

Elicited Ideal Actions Under Prior

ST MT LC HC

Figure 17: Elicited Action Under the Prior Belief

238 237 238 237

226

231

240

234

212

222

200

210

220

230

240

ST MT LC HC ST MT LC HC LC HC

S TR FR

Ea
rn
in
g

Average Earning

Figure 18: Average Earning

250

230

245

231

236 236
234

241

228

236

226

237
240

246

234

239

205

215

225

235

245

255

265

ST MT LC HC

Ea
rn

in
g

Sender Average Earning

Session 1 Session 2 Session 3 Session 4

228
231

256

232

226
229

231
229

223

230

213

227226

234

254

234

205

215

225

235

245

255

265

ST MT LC HC

Ea
rn

in
g

Receiver (TR) Average Earning

Session 1 Session 2 Session 3 Session 4

Figure 19: Average Earning Session Level

11



E
N

o
n
-p

a
ra

m
e
tr

ic
T

e
st

s
R

e
su

lt
s

T
es

t
1
/
2
-s

id
ed

?
N

u
ll

H
y
p

o
th

es
is

T
re

a
tm

en
t

A
v
er

a
g
es

p
-v

a
lu

es

B
D

1

In
T

re
a
tm

en
t

S
T

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
3

(N
u

ll
)

/
0
.8

7
2
7

(R
ev

er
se

d
M

u
ll
)

In
T

re
a
tm

en
t

M
T

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l
o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
3
0

(N
u

ll
)

/
0
.8

6
0
1

(R
ev

er
se

d
M

u
ll
)

In
T

re
a
tm

en
t

L
C

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
0

(N
u

ll
)

/
0
.8

6
5
8

(R
ev

er
se

d
M

u
ll
)

In
T

re
a
tm

en
t

H
C

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l
o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
1
9

(N
u

ll
)

/
0
.8

6
3
4

(R
ev

er
se

d
M

u
ll
)

M
W

1

∆
O S
T
<∆

O M
T

0
.1

7
1
4
3

∆
O S
T
<∆

O L
C

∆
O S
T
=0
.0

0
7
5

0
.1

0
0
0

∆
O S
T
<∆

O H
C

∆
O M
T
=0
.1

2
6
8

0
.4

4
2
8
6

∆
O M
T
<∆

O L
C

∆
O L
C
=0
.1

5
4
0

0
.8

2
8
5
7

∆
O M
T
>∆

O H
C

∆
O H
C
=0
.0

6
0
3

0
.1

7
1
4
3

∆
O L
C
>∆

O H
C

0
.0

5
7
1
4

W
il

1

In
T

re
a
tm

en
t

S
T

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

7
6
%

v
s.

8
8
%

0
.0

6
2
5

In
T

re
a
tm

en
t

M
T

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

6
0
%

v
s.

9
6
%

0
.0

6
2
5

In
T

re
a
tm

en
t

L
C

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

5
1
%

v
s.

9
6
%

0
.0

6
2
5

In
T

re
a
tm

en
t

H
C

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

6
1
%

v
s.

9
5
%

0
.0

6
2
5

M
W

1

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
0
.0

5
7
1
4

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
7
6
%

(S
T

)
0
.0

1
4
2
9

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
6
0
%

(M
T

)
0
.1

0
0
0
0

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
5
1
%

(L
C

)
0
.1

0
0
0
0

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
6
1
%

(H
C

)
0
.5

5
7
1
4

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
0
.1

9
1
8
2

∎
B

D
,

M
W

,
W

il
c,

a
n

d
K

S
re

fe
r

to
th

e
B

a
re

tt
-D

o
n

a
ld

te
st

,
M

a
n

n
-W

h
it

n
ey

U
(r

a
n

k
-s

u
m

)
te

st
,

o
n

e-
sa

m
p

le
W

il
co

x
o
n

(s
ig

n
ed

ra
n

k
)

te
st

,
a
n

d
K

o
lm

o
g
o
ro

v
-S

m
ir

n
o
v

te
st

,
re

sp
ec

ti
v
el

y.
∎

T
h

e
te

st
st

a
ti

st
ic

o
f

th
e

B
D

te
st

T
ab

le
4:

N
on

-p
ar

am
et

ri
c

T
es

ts
R

es
u
lt

I

12



T
es

t
1
/
2
-s

id
ed

?
N

u
ll

H
y
p

o
th

es
is

T
re

a
tm

en
t

A
v
er

a
g
es

p
-v

a
lu

es

B
D

1

In
T

re
a
tm

en
t

S
T

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
3

(N
u

ll
)

/
0
.8

7
2
7

(R
ev

er
se

d
M

u
ll
)

In
T

re
a
tm

en
t

M
T

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l
o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
3
0

(N
u

ll
)

/
0
.8

6
0
1

(R
ev

er
se

d
M

u
ll
)

In
T

re
a
tm

en
t

L
C

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
0

(N
u

ll
)

/
0
.8

6
5
8

(R
ev

er
se

d
M

u
ll
)

In
T

re
a
tm

en
t

H
C

,
th

e
cu

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

re
ce

iv
er

’s
a
ct

io
n

co
n

d
it

io
n

a
l
o
n

T
y
p

e
0

(s
ta

te
)

1
st

-o
rd

er
st

o
ch

a
st

ic
a
ll
y

d
o
m

in
a
te

s
th

a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

−
0
.0

0
1
9

(N
u

ll
)

/
0
.8

6
3
4

(R
ev

er
se

d
M

u
ll
)

M
W

1

∆
O S
T
<∆

O M
T

0
.1

7
1
4
3

∆
O S
T
<∆

O L
C

∆
O S
T
=0
.0

0
7
5

0
.1

0
0
0

∆
O S
T
<∆

O H
C

∆
O M
T
=0
.1

2
6
8

0
.4

4
2
8
6

∆
O M
T
<∆

O L
C

∆
O L
C
=0
.1

5
4
0

0
.8

2
8
5
7

∆
O M
T
>∆

O H
C

∆
O H
C
=0
.0

6
0
3

0
.1

7
1
4
3

∆
O L
C
>∆

O H
C

0
.0

5
7
1
4

W
il

1

In
T

re
a
tm

en
t

S
T

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

7
6
%

v
s.

8
8
%

0
.0

6
2
5

In
T

re
a
tm

en
t

M
T

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

6
0
%

v
s.

9
6
%

0
.0

6
2
5

In
T

re
a
tm

en
t

L
C

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

5
1
%

v
s.

9
6
%

0
.0

6
2
5

In
T

re
a
tm

en
t

H
C

,
th

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

“
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
sm

a
ll
er

th
a
n

th
a
t

co
n

d
it

io
n

a
l

o
n

T
y
p

e
1
.

6
1
%

v
s.

9
5
%

0
.0

6
2
5

M
W

1

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
0
.0

5
7
1
4

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
7
6
%

(S
T

)
0
.0

1
4
2
9

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
6
0
%

(M
T

)
0
.1

0
0
0
0

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
5
1
%

(L
C

)
0
.1

0
0
0
0

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
6
1
%

(H
C

)
0
.5

5
7
1
4

T
h

e
p

ro
p

o
rt

io
n

o
f

se
n

d
er

s
se

n
d

in
g

”
T

y
p

e
1
”

co
n

d
it

io
n

a
l

o
n

T
y
p

e
0

is
la

rg
er

in
T

re
a
tm

en
t

S
T

th
a
n

in
T

re
a
tm

en
t

M
T

.
0
.1

9
1
8
2

∎
B

D
,

M
W

,
W

il
c,

a
n

d
K

S
re

fe
r

to
th

e
B

a
re

tt
-D

o
n

a
ld

te
st

,
M

a
n

n
-W

h
it

n
ey

U
(r

a
n

k
-s

u
m

)
te

st
,

o
n

e-
sa

m
p

le
W

il
co

x
o
n

(s
ig

n
ed

ra
n

k
)

te
st

,
a
n

d
K

o
lm

o
g
o
ro

v
-S

m
ir

n
o
v

te
st

,
re

sp
ec

ti
v
el

y.
∎

T
h

e
te

st
st

a
ti

st
ic

o
f

th
e

B
D

te
st

T
ab

le
5:

N
on

-p
ar

am
et

ri
c

T
es

ts
R

es
u
lt

II

13



F Level-k Predictions

This section is devoted to providing predictions from the level-k model a la Crawford (2003).

• Standard Talk (ST) Prediction: Sender types pool with “Type 1” and Receiver takes the

ex-ante ideal action.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 0g 5g
1 or higher “Type 1” “Type 1” 0g (off-path) 3g or 4g

• Mediated Talk (MT) Prediction: Sender types separate by sending truthful messages and

Receiver takes 1g and 5g, respectively.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 1g 5g
1 or higher “Type 0”∗ “Type 1” 1g 5g

∗Indifference is broken by a lexicographical preference for truth-telling.

• Low Cursedness (LC) Prediction: Sender types separate by sending truthful messages and

Receiver takes 1g and 5g, respectively.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 1g 5g
1 or higher “Type 0”∗ “Type 1” 1g 5g

∗Indifference is broken by a lexicographical preference for truth-telling.

• High Cursedness (HC) Prediction: Sender types separate by sending truthful messages and

Receiver takes 2g and 4g, respectively.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 2g 4g
1 or higher “Type 0”∗ “Type 1” 2g 4g

∗Indifference is broken by a lexicographical preference for truth-telling.
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