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Abstract

We establish a strategic equivalence between cursed equilibrium and the introduction of

fictitious players in Bayesian games, allowing for controlled manipulation of cursedness in lab

settings. We consider a cheap-talk setting involving one sender and multiple receivers, one real

and several fictitious. The sender’s type is payoff-relevant to the real receiver but not to the

fictitious receivers; however, his message is shared with all receivers. Uninformed of her being

real or fictitious, the real receiver will neglect the correlation between the message and the

sender’s type—she has cursed beliefs. By adjusting the number of fictitious receivers, our lab

results align with the comparative statics predicted by cursed equilibrium.

Keywords: Cursed Equilibrium, Communication Games, Laboratory Experiments

JEL classification numbers: C72, C91, D82, D90

∗We are grateful to Andreas Blume, Shengwu Li, and Joel Sobel for their valuable comments and sugges-
tions. For helpful comments and discussions, we thank the seminar participants at the Chinese University
of Hong Kong and Singapore Management University, and the conference and workshop participants at the
2023 Asia Pacific ESA meeting. Zhao gratefully acknowledges financial support by the Research Grants
Council of Hong Kong (GRF17505020).

†Department of Economics, The Hong Kong University of Science and Technology. Email:
wooyoung@ust.hk

‡Faculty of Business and Economics, University of Hong Kong. Email: czhao@hku.hk



1 Introduction

Cursed equilibrium, a concept introduced by Eyster and Rabin (2005), has emerged as a

powerful framework for understanding deviations from standard equilibrium predictions in

various strategic environments. The applicability of cursed equilibrium has been demon-

strated in a wide range of settings, including common value auctions (Kagel and Levin,

1986), revelation games (Forsythe, Isaac, and Palfrey, 1989), jury voting (Guarnaschelli,

McKelvey, and Palfrey, 2000), signaling games (Szembrot, 2018; Lin and Tan, 2025), and

adverse selection (Wenner, 2019). The notion of cursedness captures the limited strategic

sophistication of players who may not fully comprehend the correlation between the actions

of other players and their private information, and has garnered attention for its empirical

success in explaining laboratory data. Recent work has extended the notion of cursedness to

extensive form games (Cohen and Li, 2022; Fong, Lin, and Palfrey, 2023), further broadening

its applicability and relevance in understanding strategic decision-making.

The primary motivation for this boundedly rational equilibrium concept arises from sub-

stantial evidence that individuals often overlook correlations among information sources in

various contexts, including belief formation (Eyster and Weizsacker, 2016), portfolio choices

(Enke and Zimmermann, 2019), voting (Moser and Wallmeier, 2021), and school selection

(Tergiman, 2024). Despite the abundant evidence for correlation neglect, the notion of cursed

equilibrium is often regarded as an “as if” model. Specifically, there is no guarantee that

individuals employ an algorithm where they first evaluate the extent of their opponents’

cursedness and subsequently formulate their own strategies conditional on this assessment.

Instead, they might be using entirely different strategies that roughly align with this calcu-

lation. Indeed, it is an empirical question whether individuals’ behavior in these strategic

settings systematically depends on the perceived cursedness of their opponents. However, the

unobservable nature of the degree of cursedness in the lab makes investigation barely possi-

ble, and thus, the existing experimental literature has made limited progress in establishing

the validity of cursed equilibrium as an “as is” model.

In this paper, we introduce a novel approach to comprehensively address this question

through the controlled manipulation of cursedness within a laboratory setting. In particular,

we investigate whether shifts in players’ behavior in response to changes in the perceived

cursedness of their opponents align with the comparative statics predicted by cursed equi-

librium.

The key instrument that allows us to manipulate the perceived cursedness of players is the

introduction of fictitious players into a game. Instead of the real Bayesian game, fictitious

players play an auxiliary game in which each player’s payoff does not directly depends on
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other players’ types. Specifically, the auxiliary game and the Bayesian game share the same

type space and action space. Given a fixed action profile, in the Bayesian game, a real player

i’s payoff depends both on her own type θi and her opponents’ types θ−i; in the auxiliary

game, in contrast, a fictitious player i with the same type θi gets a payoff equivalent to

the expected payoff of the real player i in the Bayesian game conditional on θi—i.e. the

fictitious player behaves as if they were a real player in the Bayesian game who completely

ignores the information content in her opponents’ actions about their types. As a result, if

a player is unsure about whether she is real or fictitious, she will behave as if she neglects

the correlation between her opponents’ actions and their types partially—i.e. she behaves

as if she is cursed. In our implementation, the uncertainty as to whether a player is real

or fictitious will be commonly known to all players in the game. Thus, by increasing the

probability that a player is fictitious, the degree of perceived cursedness of the player is

increased, and vice versa.

The formal procedure goes as follows: First, we randomly label a fraction, say χ, of the

subjects as fictitious players and the rest as real players, without informing the subjects of

their roles. Second, we conduct the Bayesian game among real players and the auxiliary game

among fictitious players, without informing the subjects of the game they are playing. The

procedure, including the fraction of fictitious players, is common knowledge to every subject.

By design, each player will hold the belief that they may be fictitious with probability χ and

thus appear to be cursed.1 We introduce the formal apparatus and present the theoretical

results regarding the strategic equivalence between the Bayesian game and the auxiliary

game in Section 2.

While the procedure can be applied to any Bayesian game, our natural focus is on the

class of games in which there exists an informed player whose payoff only depends on her

own type. To such an informed player, the uncertainty as to whether she is real or fictitious

does not matter. Thus, by varying the fraction of fictitious players in the game (χ) and

examining the shifts in the informed player’s strategy, we may obtain cleaner and sharper

comparative statics for our purpose.

We implemented the controlled manipulation of cursedness in a canonical yet simplified

cheap-talk environment, involving a privately informed sender and an uninformed receiver

(Crawford and Sobel, 1982). There are several reasons why we adopt this specific environ-

ment. Firstly, it is one of the simplest Bayesian games with an informed player. On the one

1Note that it is crucial that the equilibrium actions in the real game and also the fictitious game are not
informative about whether the game being played is real or fictitious; otherwise the agents may update their
beliefs and thus perceive a level of cursedness different from χ in equilibrium. Thus, it helps if the players
in the real game and those in the fictitious game are ex ante identical.
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hand, the sender is informed and thus the degree of cursedness of the sender is irrelevant.

On the other hand, the sender’s strategy is a mapping from his private information to the

message space, ensuring that the cursedness of the receiver matters. Moreover, theoretically,

this environment yields non-trivial comparative statics regarding both players’ strategies and

welfare across varying degrees of cursedness, enabling us to investigate the intricate relation-

ship between cursedness and players’ strategies and welfare. Previous work by Lee, Lim,

and Zhao (2023) has demonstrated that an appropriate level of cursedness can enhance the

overall welfare of the game relative to a curse-free environment (0-cursed). We reproduce

these theoretical predictions within our simplified communication environment in Section 3.

A cursed receiver in cheap-talk games behaves as if she incorrectly believes that there is

a positive probability that the sender’s messages are completely uninformative. To simulate

the receiver’s cursedness, we implement the above procedure in an economical manner: We

do not introduce fictitious senders but let each fictitious receiver get a message randomly

drawn from the set of messages sent in the real Bayesian game. By design, these messages

are completely uninformative about the fictitious receiver’s payoff, and thus, a real receiver

who does not know whether she is real or fictitious will behave as if she is cursed. Our

main focus is on how the informativeness of the senders’ messages in the real Bayesian game

shifts according to the fraction of fictitious receivers. By varying the fraction of fictitious

receivers, we create three experimental treatments: High Cursed (HC), Low Cursed (LC),

and Standard Talk (ST), where the real receivers are cursed to different extents. Additionally,

we include a benchmark treatment without fictitious receivers but with optimally mediated

communication (Mediated Talk, MT). This additional treatment enables us to compare

the effects of cursedness with those of standard information garbling devices in strategic

communication. Theoretically, the notion of cursed equilibrium suggests that the senders’

messages should be less informative in ST than those in all other treatments, and should be

equally as informative among LC, HC, and MT.

Our experimental data provide strong empirical support for the comparative statics pre-

dicted by cursed equilibrium theory. Firstly, session-level data reveals that senders’ messages

in ST are indeed less informative than those in all other treatments, while the differences

in the informativeness of messages are not statistically significant among LC, HC, and MT.

Moreover, individual-level data confirms that senders in ST use a pooling strategy more and

a separating strategy less than those in all other treatments, and such dominance is not

observed between any other pair of treatments. Our data suggests that senders do take the

cursedness of the receivers into account when formulating their strategies and in the mean-

time are not nudged into choosing different strategies across Treatments LC, HC, and MT.

Such behavior is consistent with the predictions of cursed equilibrium theory.
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Encouragingly, the behavior of the receivers in our treatments qualitatively align with the

predictions of cursed equilibrium theory, which indicates that our methodology effectively

simulates cursed behavior. Specifically, session-level data suggests that receivers’ strate-

gies in Treatment HC exhibit less separation relative to all other treatments. In addition,

individual-level analysis demonstrates that receivers in HC employ pooling strategies more

frequently and separating strategies less frequently than those in other treatments, and such

dominance is not observed between any other pairs of treatments. These behavioral patterns

are consistent with the predictions of cursed equilibrium theory when receivers possess an

intrinsic level of cursedness in addition to the simulated cursedness in our treatments.

Lastly, the outcome and welfare patterns obtained in our treatments also conforms to

cursed equilibrium theory. We find that the outcome—i.e. the distribution of real receivers’

actions conditioning on the state—in Treatment LC exhibits a higher degree of separation

compared to the outcomes in Treatments ST and HC. In addition, the average earnings of

the real receivers are significantly smaller in Treatment ST than in each of Treatments MT,

LC, and HC, while the average earnings of the real receivers are higher in Treatment LC

than in each of Treatments ST, MT, and HC, although these differences are not statistically

significant.

We conduct a simple calibration exercise under the assumption that the intrinsic cursed-

ness follows a truncated normal distribution among receivers. We find that concentrating the

degree of intrinsic cursedness around 0.46 can simultaneously rationalize the observed behav-

ior, outcome and welfare patterns in our data. Hence, our findings provide valuable empirical

evidence that supports the predicted outcomes of the cursed equilibrium. Moreover, they il-

lustrate the usefulness of our strategic equivalence and the incorporation of fictitious players

as a robust framework for studying and manipulating cursedness in laboratory experiments.

The paper is organized as follows. Section 2 establishes the strategic equivalence between

cursed equilibrium and the injection of fictitious players in a broad class of Bayesian games.

In Section 3, we provide a detailed description of the simplified communication game envi-

ronment. The experimental design is presented in Section 4, followed by a set of testable

hypotheses in Section 5. The experimental results are reported in Section 6, and we present

the results from the calibration exercise to measure the degree of intrinsic cursedness in

Section 7.
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2 Cursedness and Fictitious Players

Consider a standard Bayesian game G = (N,Θ, Y, u, π), in which N = {1, . . . , n} is a finite

set of players, Θ = ⨉
n
i=1 Θi is the set of possible type profiles, Y = ⨉

n
i=1 Yi is the set of possible

action profiles, u = (u1, . . . , un) is the profile of payoff functions, and π ∈ ∆(Θ) is the (full

support) common prior shared by all players. For each i ∈ N , Θi and Yi are the finite set of

possible types and actions of player i, respectively, and ui ∶ Θ×Y → R is her payoff function.

A (mixed) strategy for player i, σi ∶ Θi → ∆(Yi), specifies a probability distribution over

actions for each type.

For each i ∈ N , let Θ−i and Y−i be respectively the possible type profiles and action profiles

without player i. Player i’s belief about other players’ types given her own type θi ∈ Θi is

πi(⋅∣θi) ∈ ∆(Θ−i), which is pinned down by π and Bayes’ rule. For any strategy profile σ and

each i ∈ N , let σ−i(⋅∣θ−i) ∈ ⨉j≠i ∆(Yj) be the distribution of actions that player i’s opponents

under σ when their types are θ−i ∈ Θ−i; let σ−i(y−i∣θi) = ∑θ−i∈Θ−i
σ−i(y−i∣θ−i)πi(θ−i∣θi) be the

conditional probability that y−i is played when player i is of type θi and all of player i’s

opponents follow σ.

To define the notion of cursedness, given any σ and i ∈ N , let πi(⋅∣θi, y−i, σ−i) ∈ ∆(Θ−i)

be the correct posterior belief player i should have if the rest of the players play y−i ∈ Y−i
under strategy σ, and π̂i(⋅∣θi, y−i, σ−i) ∈ ∆(Θ−i) be the posterior belief player i really has. In

particular, for any χ ∈ [0,1], we say that player i is χ-cursed if

π̂i(⋅∣θi, y−i, σ−i) = π̂
χ
i (⋅∣θi, y−i, σ−i) ∶= χπi(⋅∣θi) + (1 − χ)πi(⋅∣θi, y−i, σ−i)

for all θi ∈ Θi, y−i ∈ Y−i, and strategy profile σ such that σ−i(y−i∣θi) > 0. We say that a player

is Bayesian if she is 0-cursed.

Now we define the χ-cursed equilibrium as in Eyster and Rabin (2005).

Definition 1. For any χ ∈ [0,1], a strategy profile σ is a χ-cursed equilibrium if for each

i ∈ N , θi ∈ Θi, and each y∗i such that σi(y∗i ∣θi) > 0,

y∗i ∈ arg max
yi∈Yi

∑
θ−i∈Θ−i

∑
y−i∈Y−i

ui(θi, θ−i, yi, y−i)π̂
χ
i (θ−i∣θi, y−i, σ−i)σ−i(y−i∣θi).

In order to implement cursed beliefs among the players, we first introduce an auxiliary

game as follows. For all i ∈ N , (θi, θ−i) ∈ Θ, and (yi, y−i) ∈ Y , define

ui(θi, yi, y−i) = ∑
θ′
−i∈Θ−i

ui(θi, θ
′
−i, yi, y−i)πi(θ

′
−i∣θi).
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Thus, ui the average payoff to player i if her type is θi and (yi, y−i) is played. In other

words, ui is independent of θ−i. Given strategy profile σ of G, let the auxiliary game G∗ =

(N,Θ, Y, u, π). Essentially, in G∗, each player behaves as if she learns nothing about her

opponent’s type from their actions. Thus, for every action profile (yi, y−i) and type θi, the

expected payoff of player i is taken with respect to πi(⋅∣θi), irrespective to the action profile

played.

Now for any χ̃ ∈ [0,1], let Gχ̃ = χ̃G∗ + (1− χ̃)G. Thus, in Gχ̃, nature moves first to select

the game to be played, of which the players are not informed: The auxiliary game G∗ is

played with probability χ̃, and G is played with probability 1− χ̃. The following observation

is immediate.

Proposition 1. For any χ ∈ [0,1], a strategy profile σ is a Bayesian Nash equilibrium of

Gχ if and only if it is a χ-cursed equilibrium of G.

Thus, when all players are χ-cursed, G and Gχ are strategically equivalent in the sense

of the proposition above. However, the welfare considerations of G and Gχ can be quite

different. In G, the χ-cursed players behave as if they are Bayesian but incorrectly believe

that Gχ is played. Thus, when evaluating the ex ante welfare of these players, the payoffs in

the auxiliary game G∗ should be irrelevant. To be more specific, given any strategy profile

σ, the ex ante welfare of player i in G that is χ-cursed, denoted as EUσ
i (G,χ), should be

given by

EUσ
i (G,χ) = ∑

(θi,θ−i)∈Θ
∑

(yi,y−i)∈Y
ui(θi, θ−i, yi, y−i)πi(θ−i∣θi, y−i, σ−i)σ−i(y−i∣θi)σi(yi∣θi)πi(θi)

in which πi(θi) denotes the prior probability that player i draws type θi. Note that in the

evaluation of EUσ
i (G,χ), πi is used instead of π̂i, and, as a result, EUσ

i (G,χ) does not depend

on χ. Since πi takes into account the correct correlation between θ−i and y−i, using πi gives

rise to the real average payoff that player i would get from the game.

By contrast, the ex ante welfare of a Bayesian player i in Gχ given σ, denoted as

EUσ
i (G

χ,0), should be given by

EUσ
i (G

χ,0) = χEUσ
i (G

∗,0) + (1 − χ)EUσ
i (G,χ),
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in which

EUσ
i (G

∗,0) = ∑
θi∈Θi

∑
(yi,y−i)∈Y

ui(θi, yi, y−i)σ−i(y−i∣θi)σi(yi∣θi)πi(θi)

= ∑
(θi,θ−i)∈Θ

∑
(yi,y−i)∈Y

ui(θi, θ−i, yi, y−i)πi(θ−i∣θi)σ−i(y−i∣θi)σi(yi∣θi)πi(θi)

is the ex ante welfare of a Bayesian player i in G∗ given strategy profile σ. It is clear that

EUσ
i (G

∗,0) may be different from EUσ
i (G,χ), precisely because the correlation between θ−i

and y−i via σ−i is not payoff-relevant in G∗, as if the players have completely neglected such

correlation.

The exercise above suggests that we may introduce fictitious roles into games to simulate

the effects of cursedness. Consider the following implementation of Gχ with a population of

subjects:

1. Randomly label χ fraction of the subjects as the fictitious players and label the rest

as the real players. Subjects are not informed of their roles.

2. Divide the real players into groups of n and play G. Divide the fictitious players into

groups of n and play G∗. Subjects are not informed of the game that they are playing.

Let the ex ante welfare for a real, Bayesian player i in the experiment above given strategy

profile σ be EUσ
i (G

χ,0∣real). The following proposition enables us to analyze the welfare

implications of cursedness in G by analyzing the real players in the experiment above.

Proposition 2. Suppose all subjects are Bayesian. Then for all i ∈ N , χ ∈ [0,1], and strategy

profile σ, we have EUσ
i (G

χ,0∣real) = EUσ
i (G,χ).

Our goal is to implement cursedness in the lab by varying χ in Gχ. In reality, it is

plausible that the subjects may bring some level of intrinsic cursedness, denoted as χ0, to

the lab. Thus, the following results will be useful in our calibration exercise.

Proposition 3. The following statements are true for all χ0, χ ∈ [0,1] and χ̂ = χ0+(1−χ0)χ:

(i) A strategy profile σ is a χ0-cursed equilibrium of Gχ if and only if it is a χ̂-cursed

equilibrium of G.

(ii) Suppose all subjects are χ0-cursed. Then for all i ∈ N and strategy profile σ, we have

EUσ
i (G

χ, χ0∣real) = EUσ
i (G, χ̂), in which EUσ

i (G
χ, χ0∣real) denotes the ex ante welfare for a

real, χ0-cursed player i in the experiment given strategy profile σ.

To see how χ̂ is derived, note that in any game the posterior of a χ0-cursed player is a

χ0-weighted average of her prior and the correct Bayesian posterior. In addition, a Bayesian
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player in Gχ behaves as if she is a χ-cursed player in G, whose posterior belief is a χ-

weighted average of the prior and the posterior of a Bayesian player in G. Combining these

two observations, a χ0-cursed player in Gχ behaves as if she is playing G with a posterior

belief that assigns a weight of χ0 + (1 − χ0)χ to the prior and the remaining weight to the

posterior of a Bayesian player in G—the χ0-cursed player in Gχ behaves as if she is a χ̂-cursed

player in G with χ̂ = χ0 + (1 − χ0)χ.

Hence, using the experimental procedure described above, we will be able to obtain

comparative statics regarding how cursedness affects welfare in G by analyzing how χ affects

the welfare of the real players in the experiment.

3 A Simplified Strategic Communication Game

While the aforementioned procedure can be applied to any Bayesian game, our natural focus

is on the class of games in which there exists an informed player whose payoff only depends

on her own type. To such an informed player, the uncertainty as to whether she is real or

fictitious does not matter. Thus, by varying the fraction of fictitious players in the game

(χ) and examining the shifts in the informed player’s strategy, we may obtain cleaner and

sharper comparative statics for our purpose.

Consider a canonical yet simplified cheap-talk environment. There are two players, N =

{S,R}, in which S is the sender and R is the receiver. The sender’s type θ is drawn from

ΘS ∈ {0,1}. There is no uncertainty regarding the receiver’s type and it is not payoff-relevant.

Both players share the common prior π ∈ ∆(ΘS) such that that π(1) = p ∈ (0,1). The sender

selects a message m ∈ YS = {0,1}, and the receiver takes an action y ∈ Y ⊆ [0,1], after

observing the message. Thus, the set of possible action plans for the receiver YR = Y {0,1},

which is the set of all mappings from the message space {0,1} to Y . Given θ ∈ {0,1},

y(⋅) ∈ Y {0,1}, and m ∈ {0,1}, The sender’s payoff is US(θ,m, y(⋅)) = −(y(m) − θ − b)2, and the

receiver’s payoff is UR(θ,m, y(⋅)) = −(y(m) − θ)2, in which b ≥ 0.

3.1 Equilibrium Predictions when Y = [0,1]

Now we present equilibrium predictions when Y = [0,1]; that is, the receiver can choose any

action from [0,1]. Although we will further discretize Y in the actual experiment, these

equilibrium predictions will serve as a guide for parameter selection.
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3.1.1 Cursed Talk

To avoid issues related to off-equilibrium path beliefs, we will focus on equilibria in which

all messages in YS are used. Fong, Lin, and Palfrey (2023) and Cohen and Li (2022) extend

the idea of cursed equilibrium to extensive games. In each paper, a consistency requirement,

similar to the one for standard sequential equilibrium, is imposed on beliefs off the equilibrium

path. Fong et al. (2023) demonstrated that their consistency requirement mandates that the

belief at any non-terminal history, regardless of whether it is on or off the equilibrium path,

must assign a minimum weight of χ to the belief from the preceding period. In contrast,

Cohen and Li (2022) allow each player to neglect the correlation between their opponents’

actions and their private information, irrespective of whether this information is exogenously

provided or endogenously acquired during the game. In our game, as is standard in cheap talk

games, we can with out loss of generality assume that all messages are used in equilibrium

so beliefs off the equilibrium path do not play a role. Since beliefs off the equilibrium path

are irrelevant, our game can be treated as a simultaneous-move game and thus the original

definition in Eyster and Rabin (2005) applies.

Formally, a strategy profile σ = (σS, σR) is said to be exhaustive if

σS(m) ∶= ∑
θ∈ΘS

σS(m∣θ)π(θ) > 0

for every m ∈ YS. Given an exhaustive strategy profile, all information sets in the game can

be reached with positive probability. Thus, we get subgame perfection for free.

Definition 2. A exhaustive strategy profile σ = (σS, σR) is a χ-cursed equilibrium of the

simplified strategic communication game if for each θ ∈ ΘS, each y∗(⋅) ∈ YR such that

σR(y∗(⋅)) > 0, and each m∗ such that σS(m∗∣θ) > 0,

y∗(m) ∈ arg max
y(⋅)∈YR

∑
θ∈ΘS

UR(θ,m, y(⋅))π̂
χ(θ∣m,σS), ∀m ∈ YS

m∗ ∈ arg max
m∈YS

∑
y∈YR

US(θ,m, y(⋅))σR(y(⋅)),

in which π̂χ(θ∣m,σS) = χπ(θ) + (1 − χ)σS(m∣θ)π(θ)σS(m) .

It is easy to see that Y = [0,1] and quadratic utility together ensure that it is without

loss of generality to focus on pure strategies for the receiver. In particular, in equilibrium,

given the sender’s strategy σS, the receiver’s action plan y(⋅) must satisfy

y(m) = ∑
θ∈ΘS

θπ̂χ(θ∣m,σS) = π̂
χ(1∣m,σS) = χp + (1 − χ)

σS(m∣1)p

σS(m)
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for every m ∈ YS.

As usual, the babbling equilibrium always exists, in which the receiver will take the ex

ante optimal action p regardless of the sender’s message. In this case, the receiver’s ex-ante

welfare is −p(1 − p). In the separating equilibrium, the sender’s strategy is σS(⋅∣0) = δ0 and

σS(⋅∣1) = δ1, in which δm is the Dirac measure at m ∈ YS. In this case, the equilibrium action

plan of the receiver must be y(0) = χp and y(1) = (1 − χ) + χp. Incentive compatibility

on the sender’s side then requires US(0,0, y(⋅)) ≥ US(0,1, y(⋅)), which reads b ≤ 1−χ
2 + χp.

Clearly, in the separating equilibrium, the ex-ante welfare of the receiver is −χ2p(1 − p).

When b > 1−χ
2 + χp, it can be shown that no informative equilibrium can be sustained.

Similar to the standard cheap talk game with quadratic preferences, the ex ante welfare

of the sender and the receiver is aligned in our game. Thus, it is without loss of generality

to focus on the ex ante welfare of the receiver.

3.1.2 Mediated Cursed Talk

Lee et al. (2023) show that cursed beliefs mitigate the strategic tension between the sender

and the receiver, but unlike standard information garbling devices that have a similar effect,

it does so without contaminating the content of the messages.2 As a result, cursedness may

further enhance welfare beyond the bound achieved by standard garbling devices. In order

to compare the welfare implication of cursedness with that of standard garbling devices, we

now introduce a mediator in the spirit of Goltsman, Hörner, Pavlov, and Squintani (2009).

To allow for intrinsic cursedness that subjects bring to the lab, we will characterize optimal

mediation with a cursed receiver.

Given that the receiver is χ-cursed, the mediator chooses Borel probability measures

µ(⋅∣θ) on Y = [0,1] for each θ ∈ ΘS that solve the following optimization problem:

max
µ(⋅∣θ), θ∈ΘS

∑
θ∈ΘS

Eµ[−(y − θ)2∣θ]π(θ)

subject to Eµ[−(y − θ − b)2∣θ] ≥ Eµ[−(y − θ − b)2∣θ′], ∀θ, θ′ ∈ ΘS

y = χp + (1 − χ)
pµ(y∣1)

pµ(y∣1) + (1 − p)µ(y∣0)
, if pµ(y∣1) + (1 − p)µ(y∣0) > 0,

in which Eµ[⋅∣θ] is the conditional expectation operator with respect to µ(⋅∣θ). Basically,

the mediator maximizes the receiver’s ex ante welfare (which is aligned with the sender’s)

subject to the constraints that the sender will truthfully report her type to the mediator and

2Lee et al. (2023) frames cursedness as prior bias however the two concepts are observationally equivalent
in cheap-talk games.
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that the χ-cursed receiver will follow the mediator’s recommendation.

It can be shown that when b ≤ 1−χ
2 + χp, optimal mediation induces the separating equi-

librium; when b ≥ 1−χ
2 +

(1+χ)p
2 , optimal mediation induces the babbling equilibrium; when

1−χ
2 +χp < b < 1−χ

2 +
(1+χ)p

2 , it is optimal for the mediator to recommend 2b−1+χ−χp if θ = 0,

and recommend 1 − χ + χp with probability φ and 2b − 1 + χ − χp with probability 1 − φ if

θ = 1, in which

φ =
p − b

2p(1 − χ + χp − b)
+

1

2p
.

In this case, the ex ante welfare of the receiver under optimal mediation is (1 − p)[(1 − χ −

2b)(1 + χ) + χ(2 + χ)p]. We provide the proof in Online Appendix A.

Thus, in any case, we can always restrict attention to the following type of media-

tion/information garbling: When the sender sends m = 0, the receiver always receives m = 0.

When the sender sends m = 1, there is a certain probability that the receiver will receive

m = 0; otherwise, with the remaining probability, the receiver will receive m = 1.

4 Experimental Design

A cursed receiver in cheap talk games behaves as if she incorrectly believes that with a

positive probability, the sender’s messages are completely uninformative about the type.

Hence, controlling cursedness is equivalent to controlling the incorrect model in the receiver’s

head, which may seem impossible to implement in experiments without deception. With the

guidance of Proposition 3, however, we can simulate cursedness by controlling the proportion

of fictitious roles in the game. Since the sender’s cursedness does not play a role in our game,

we only have to introduce fictitious receivers.

There are three roles in our experiment: S, True R, and False R. At the beginning of the

game, X participants are randomly assigned the role of S, another X the role of True R, and

the rest (Y people) the role of False R. Each individual is informed whether the assigned role

is S or not. If the role is not S, then no further information about whether the role is True

R or False R is provided. Then, the state is drawn independently for each individual who is

assigned True R or False R. One S and one True R (who does not know if him/herself is True

R or False R) are randomly paired to play the cheap talk game. False R’s are not paired with

anyone, but still, receive a message randomly chosen from all messages sent by S participants

such that they cannot tell they are not paired. Finally, each of the R participants takes an

action that affects his/her payoff and, if he/she is paired, the corresponding S participant’s

11



payoff.

The procedure above is announced to all participants of the game in a Zoom meeting, and

thus, the game setup is common knowledge to all participants. Each S participant knows

that he/she observes the true state, while each R participant thinks that with probability
Y

X+Y , he/she is False R and the message he/she receives is not informative. In addition, each

S participant knows that the R paired with him/her exhibits mistrust. Thus, under this

setup, the game played between each S and True R pair exactly implements (controlled)

cursedness χ = Y
X+Y .

It is worth emphasizing that under the setup above, if all S participants play the same

strategy σS, the Bayesian posterior of an R participant upon receiving message m is exactly

given by π̂χ(⋅∣m,σS) with χ = Y
X+Y . For this to be true, it is crucial that each False R receives

a message randomly drawn from all S participants. When all S participants are playing the

same strategy, the ex ante distribution of messages that a False R may receive is the same

as the ex ante distribution of messages that a True R may receive. This means that the

message that each R participant receives is completely uninformative about her role, which

gives rise to the posterior π̂χ(⋅∣m,σS).

One alternative way of implementing cursedness among receivers is to match fictitious

receivers with preprogrammed machine senders.3 However, if machines are perceived to

behave differently from human senders, then the equilibrium actions in both the real game

and the fictitious game will be informative about the receiver’s role, and thus the level

of cursedness implemented will be different from χ. Thus, implementing cursedness with

machines requires careful calibration of the preprogrammed strategies. We opt not to go

this route.

4.1 The Antidote Game

We implement the strategic communication game above as the Antidote Game in our ex-

periments. Consider two treasure hunters S and R who are poisoned in the middle of their

adventure. They have the recipe to make an antidote, according to which a certain kind of

toxic herbal extract is the main ingredient. R has 5 grams of the herbal extract while S does

not have any. The exact amount of the herbal extract needed to make a perfect antidote

depends on the seriousness of the poison and whether the poison is type 0 or type 1. The

situation of S is more serious than that of R, and thus S always needs 3 grams more of

the herbal extract than R regardless of whether the poison is type 0 or type 1. That is, we

implement b = 3/5 = 0.6.

3Note that adding machine receivers to the game does not affect the human subjects’ beliefs at all.
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If the poison is type 0, R does not need any herbal extract to make a perfect antidote.

That means, S needs 3 grams for a perfect antidote. If the poison is type 1, R needs all

5 grams of the herbal extract to make a perfect antidote. That means, S needs 8 grams.

Putting in too little or too much of the herbal extract will result in pain (a utility loss). The

larger the difference between the exact amount needed and the actual amount taken, the

more pain one will suffer. Precisely, the payoff becomes

300 - 4 × [The exact amount needed – The actual amount taken]2 for S, and

300 - 12 × [The exact amount needed – The actual amount taken]2 for R.

The following table illustrates the possible payoffs for each player in different scenarios.

Poison Type
Payoff for R Payoff for S

Type 0 Type 1 Type 0 Type 1
0 300 0 264 44

The Actual 1 288 108 284 104
Amount (gram) of 2 252 192 296 156

Herbal Extract 3 192 252 300 200
Taken 4 108 288 296 236

5 0 300 284 264

Table 1: Payoffs

They know that the poison is type 0 with a 30% chance and type 1 with a 70% chance.

Thus, we have p = 0.7. S has a pair of magic glasses that tell him privately whether the

poison is type 0 or 1. They have limited time to make only one bowl of antidote, but after

the antidote is prepared they can use a magic spell to quickly duplicate it such that each

player can take a full cup (of identical antidote). The game unfolds as follows: First, for each

round and for each group, the type of poison is randomly drawn. Second, S wears his magic

glasses and privately learns the poison type. Third, S sends one of the following messages

to R:

“The poison is Type 0.” “The poison is Type 1.”

After receiving a message, R decides how many grams (between 0 and 5) of the herbal

extract to put in to make an antidote. Lastly, the antidote created is duplicated. Each of

R and S takes the antidote which exerts its effect fully on each user. Finally, the outcomes,

depending on the exact amount of herbal extract needed and the actual amount taken, are

realized.
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4.2 Treatments and Procedure

Our experimental design is presented in Table 2 below which involves four treatments. The

experimental environment is adopted from the antidote game described in Section 4.1.

Treatment Simulated Cursedness (χ) Garbling (φ)
Standard Talk (ST) 0 0
Low Cursed (LC) 0.2 0
High Cursed (HC) 0.5 0

Mediated Talk (MT) 0 0.9

Table 2: Experimental Treatments

The four treatments differ from each other with respect to 1) the degree of controlled

cursedness injected to the game and 2) whether the message sent by the sender (S) is garbled

or not.

Standard Talk (ST) Treatment. In this treatment, there were equal numbers of S and

R. At the beginning of each round, one S and one R were randomly paired. They were

randomly reshuffled after each round to form new pairs. The roles were fixed throughout

the official rounds of the experiment. Participants knew their roles. The message sent by S

was transmitted to the paired R without garbling.

Cursed (LC and HC) Treatments. The message transmission procedure in this treat-

ment is the same as that of Treatment ST but the roles and matching procedure differ from

it. There were three roles—S, True R, and False R—in the cursed treatments. At the be-

ginning of the experiment, X participants were randomly assigned the role of S, another X

the role of True R, and the rest (Y people) the role of False R, where χ = Y
X+Y captures the

degree of cursedness. We set χ = 0.2 for Treatment LC and χ = 0.5 for Treatment HC such

that truth-telling is incentive-compatible in both treatments. The roles were fixed through-

out the experiment. At the beginning of the 1st official round, each individual was informed

whether the assigned role was S or not. If the role was not S, then no further information

about whether the role was True R or False R was provided. Thus, the only thing they knew

was that the chances were X
X+Y and Y

X+Y that they were True R and False R, respectively.

In each round, one S and one True R (who did not know if him/herself was True R or False

R) were randomly paired to form a group of two. They were randomly reshuffled after each

round to form new groups. Participants whose role was False R were not paired with anyone

but still received a message randomly chosen from all S participants in the round of the

session such that they could not tell they were not paired.

Mediated Talk (MT) Treatment. The roles and matching procedure in this treatment
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are the same as those in Treatment ST but the procedure of message transmission differs

from it. When S sent the message “The poison is Type 0”, the message was transmitted to

the paired R. When S sends the message “The poison is Type 1”, the message is garbled

such that the paired R received the original message “The poison is Type 1” with φ = 90%

chance and the message “The poison is Type 0” with 10% chance.

All treatments shared the same feedback procedure. The end-of-each-round feedback for

the subjects whose role was S included whether the poison was type 0 or 1, the exact amount

of herbal extract needed for a perfect antidote, the message S sent, the message R received,

the actual amount of herbal extract taken, and the earning. For the subjects whose role was

R (True R or False R), the feedback was provided only at the end of the 20th round, but

not of other rounds. This was to ensure that R had no way to update his/her belief about

the actual role he/she was assigned to.

We elicited the ex-ante ideal action under the prior belief before the official rounds began.

At Round 0, we asked every participant to play the role of R and to decide what action to

take without receiving any message from S. This elicitation was fully incentivized as Round

0 can be chosen for the final payment. The individual outcome from Round 0 was revealed to

each participant at the end of the round before he/she proceeded to the first official round.

We conducted four sessions for each of the ST and MT treatments, six sessions for the LC

treatment, and seven sessions for the HC treatment. Thus we had 21 sessions in total. The

number of True R participants was 31, 37, 48, and 42 in ST, MT, LC, and HC treatment,

respectively. We used the random-matching protocol and between-subjects design. With

three exceptions, every session had 18 participants.4 Our experiment was conducted in

English using Zoom and oTree (Chen, Schonger, and Wickens, 2016) via the real-time online

mode at the Hong Kong University of Science and Technology (HKUST) where turning on

their camera was a strict requirement. A total of 370 subjects who had no prior experience

in our experiment were recruited from the graduate and undergraduate populations of the

university.

One round out of 20 official rounds and Round 0 (for the elicitation of the ex-ante ideal

action) was randomly chosen for the final payment. The total payment in HKD was the

payoff each subject earned in the selected round plus an HKD 40 show-up fee. Subjects

earned HKD 275 (≈ USD 35.25) by participating in a session that lasted 70 minutes on

average. The final earnings were paid electronically via the HKUST Autopay System to the

bank account each participant provided to the Student Information System (SIS).

4One session for Treatment MT had 20 participants whereas Treatment ST had one session with 12
participants and one session with 14 participants.
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5 Hypotheses

Our first hypothesis focuses on the sender’s strategy, aiming to determine whether senders

consider the cursedness of the receivers when formulating their strategies. The unique equi-

librium in Treatment ST is characterized by babbling. In Treatments MT, LC, and HC, the

same babbling equilibrium also exists, but it is not neologism proof (Farrell, 1993) while the

truth-telling equilibrium survives neologism proofness.5 The theoretical predictions lead to

the following hypothesis:

Hypothesis 1 (Sender Strategy).

(a) The proportion of message “Type 1” conditional on type 1 is higher than that condi-

tional on type 0 in each of Treatments MT, LC, and HC. There is no such difference

in Treatment ST.

(b) The proportion of sender subjects using the separating strategy is larger in each of

Treatments MT, LC, and HC than that in ST.

Next, we turn our attention to the receiver’s strategy. The key question is whether our

methodology of introducing fictitious receivers effectively simulates the cursed behavior of

the receivers. Figure 1 illustrates the theoretical predictions of the cumulative distributions

of the receiver’s actions conditional on the state for each treatment. In Treatment ST, the

two conditional cumulative distributions are identical because, in the unique equilibrium

outcome, the receiver takes a pooling action regardless of the message, remaining indifferent

between actions 3 and 4. In contrast, Treatments MT, LC, and HC feature a truth-telling

equilibrium that results in varying degrees of separation in the receiver’s action choices,

depending on the specific communication channel. As previously noted, the truth-telling

equilibrium is the unique robust equilibrium that survives the NITS condition.

The degree of separation in the receiver strategy can be captured by the degree of the first-

order-stochastic-dominance (FOSD) relationship between the two conditional cumulative

distributions. To set a concrete testable hypothesis, we adopt the following measure of the

degree of separation. Let F,G be two cumulative distributions over the space of actions

5A neologism-proof equilibrium is one where no credible neologism exists. Farrell (1993) defines credible
neologisms by stating that for every putative equilibrium, a neologism indicating “my type is in K” exists for
each non-empty subset K of the type space. A neologism is credible if the sender’s types in K strictly prefer
the neologism’s outcome over the proposed equilibrium outcome, and the types not in K weakly prefer to
stay in the proposed equilibrium. In the babbling equilibrium in Treatments MT, LC, and HC, there always
exists a single type (either Type 0 or Type 1) who wants to create and send a credible neologism revealing
his type.
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Figure 1: Receiver Strategy (CDF) - Theoretical Predictions

Y = {0,1,2,3,4,5}. The degree of separation from F to G, denoted as ∆(F,G), is given by

∆(F,G) = ∑
y∈Y

(F (y) −G(y))/5, (5.1)

In case thatG first-order stochastically dominates F , then (i) ∆(F,G) is simply the L1-metric

between F and G normalized by a factor of 1/5, and (ii) ∆(F,G) ∈ [0,1], with ∆(F,G) = 1

if and only if F assigns all probability mass to action 0 and G assigns all probability mass

to action 5.

We define the degree of separation in the receiver’s strategy, ∆R, as follows:

∆R = ∆(FR
0 , F

R
1 )

where FR
m is the cumulative distribution of actions conditional on the message “Type m” for

m ∈ {0,1}. We will use ∆R
j to denote the degree of separation in the receiver’s strategy for

Treatment j, for j ∈ {ST, MT, LC, HC}. Thus, the receiver’s strategy of Treatment j is said

to be more (less) separating than that of Treatment k if ∆R
j is larger (smaller) than ∆R

k . It

is straightforward to calculate that ∆R
ST = 0, ∆R

MT = ∆R
LC = 0.8, and ∆R

HC = 0.4. Our second
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hypothesis is as follows:

Hypothesis 2 (Receiver Strategy).

(a) In each of Treatments MT, LC, and HC, the cumulative distribution of receiver’s action

conditional on “Type 0” first-order stochastically dominates (FOSD) that conditional

on “Type 1”. There is no such FOSD relationship in Treatment ST.

(b) ∆R
ST = 0 < ∆R

HC < ∆R
MT = ∆R

LC.

(c) The proportion of receiver subjects using the separating strategy is larger in each of

Treatments MT, LC, and HC than that in ST.

In cheap-talk games, the outcome is defined as a joint distribution over the action space

and the state (type) space. Figure 2 presents the theoretical predictions of the cumulative

distributions of the receiver’s action conditional on the state for each treatment. In Treat-

ment ST, the two conditional cumulative distributions are identical because pooling is the

unique equilibrium outcome where the receiver is indifferent between actions 3 and 4. In each

of the Treatments MT, LC, and HC, there is a robust truth-telling equilibrium that leads to

some degrees of separation in outcome depending on the exact communication channel.

We define the degree of separation in outcome, ∆O, as follows:

∆O = ∆(FO
0 , F

O
1 )

where FO
θ is the cumulative distribution of actions conditional on type θ ∈ {0,1}. We will use

∆O
j to denote the degree of separation in outcome for Treatment j, for j ∈ {ST, MT, LC, HC}.

Thus, the outcome of Treatment j is said to be more (less) separating than that of Treat-

ment k if ∆O
j is larger (smaller) than ∆O

k .6 It is straightforward to calculate that ∆O
ST = 0,

∆O
MT = 0.72, ∆O

LC = 0.8 and ∆O
HC = 0.4. Our third hypothesis is as follows:

Hypothesis 3 (Outcome).

(a) In each of Treatments MT, LC, and HC, the cumulative distribution of receiver’s action

conditional on type 0 first-order stochastically dominates (FOSD) that conditional on

type 1. There is no such FOSD relationship in Treatment ST.

(b) ∆O
ST = 0 < ∆O

HC < ∆O
MT < ∆O

LC.

6A higher degree of separation does not necessarily imply a higher welfare measured by the receiver’s
payoff due to the larger (than the binary) action space and the quadratic loss function we assumed. We will
have a separate hypothesis on the welfare ranking later.
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∎ For Treatments ST and LC, the cumulative distributions are drawn based on the assumption that the
receiver is uniformly randomizing between the two indifferent actions, 3 and 4.

Figure 2: Outcome - Theoretical Predictions

Note that neither ∆R nor ∆O fully captures the welfare generated by the information

transmission. The right measure is the payoff of the receiver as presented in Table 2. Our

last hypothesis thus states:

Hypothesis 4 (Welfare). True Rs’ average earnings are ranked as follows:

EUST < EUMT < EUHC < EULC.

6 Experimental Results

We begin by reporting our experimental findings related to sender behavior, followed by

an analysis of receiver behavior. In our examination of receiver behavior, we utilize data

from both False Rs and True Rs (when available), as they are ex-ante identical. We then

compare the outcomes across the four treatments. Since False Rs in the Cursed treatments

(LC and HC) were introduced to accurately replicate the environment in which True Rs

exhibit cursed behavior, we focus exclusively on the outcomes generated by True Rs in these
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two treatments. Finally, we will present the results concerning welfare.

All analyses presented in this section used data aggregated across all 20 rounds of all

sessions of each treatment.7 We compare distributions for first-order stochastic dominance

via the non-parametric Barrett-Donald (BD) test procedure proposed by Barrett and Donald

(2003).8 Tables 4-5 in Online Appendix D present all non-parametric test results reported

in this section.

6.1 Sender Behavior

Figure 3 reports the treatment-level aggregated proportions for a sender to send the message

“The poison is Type 1” (shortly, “type 1” hereafter) conditional on each type.9 Figure 13 in

Online Appendix C provides the session-level data.
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Figure 3: Sender Strategy

Notice that the proportion of senders sending “type 1” conditional on type 1 is higher

than that conditional on type 0 in all treatments. This observation is not only true at the

treatment level but also true at the session level. The paired sample Wilcoxon signed-rank

tests using session-level data as independent observations reveal that the differences are

statistically significant in all treatments (one-sided, p-value= 0.0625 for Treatments ST and

7We will use three types of aggregations of data. First, treatment level means that the data is aggregated
over all 20 rounds across all sessions for each treatment. Second, session level means that the data is
aggregated over all 20 rounds for each session. Third, individual level means that the data is aggregated
over all 20 rounds for each individual. Given that we did not provide any feedback to the receiver subjects
in our experiments, it is appropriate to look at the data aggregated across all 20 official rounds.

8Given two distributions F and G, the BD procedure requires to test both Null hypotheses F ≥ G and
G ≥ F . F first-order stochastically dominates G if and only if F ≥ G but not G ≥ F is accepted. For the
p-values in each test, we employ a bootstrap of size 10,000.

9We follow the convention of adding double-quotation marks to distinguish states (type 0 and type 1)
from messages (“type 0” and “type 1”).
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MT, 0.0156 for Treatment LC, and 0.0078 for Treatment HC).10 This observation implies

that senders on average sent informative signals to receivers in all four treatments. Thus,

we have to partially reject Hypothesis 1(a) for Treatment ST.

The informativeness of senders’ messages, however, is not the same across treatments.

The Mann-Whitney (henceforth MW) tests using session-level data as independent obser-

vations indicate that the proportions of senders sending “type 1” conditional on type 0

are significantly larger in Treatment ST than in Treatments MT, LC, and HC (one-sided,

p-values= 0.0571, 0.0048 and 0.0212, respectively). At the same time, the proportions of

senders sending “type 1” conditional on type 1 across all four treatments are not statistically

different from each other (two-sided, p-values> 0.1714). Combining these two observations

implies that the senders’ messages are significantly less informative in Treatment ST than

in each of Treatments MT, LC, and HC.

We conduct an additional analysis on the informativeness of senders’ messages using

individual-level data as follows. First, we calculate the proportion for each individual sender

subject to send “type 1” conditional on type 1 and that conditional on type 0. The larger

the difference, the more separating the strategy the sender subject is using. For example, the

truth-telling (separating) strategy should generate a difference of 1 while the fully babbling

(pooling) strategy should generate a difference of 0. Second, we classify each individual

sender subject as a separating category if the calculated difference is larger than a cutoff.

Similarly, we classify each individual sender subject as a pooling category if the calculated

difference is smaller than a cutoff. As the cutoff for the separating (pooling) category be-

comes higher, the proportion of sender subjects in the separating (pooling) category weakly

decreases (increases).

Figure 4 reports results from the individual-level analysis. The horizontal axis of each

panel indicates the different cutoffs employed for the separating category (first row) and the

pooling category (second row). The black area at the top shows the proportion of individual

sender subjects who belong to the separating category. The dark gray area at the bottom

shows the proportion of individual sender subjects who belong to the pooling category. The

light-gray area in-between indicates the proportion of subjects who belong to neither of them.

For example, looking at the top-left panel of Figure 4 for Treatment ST, when the cutoff

values are 0.5 and 0.5 for both separating and pooling categories, the figure shows that the

proportions are 13% for separating and 87% for pooling. As we move to the right, the cutoff

for separating increases, and that for pooling decreases with the increment of 0.1. As a result,

the proportions for both separating and pooling categories decrease (weakly) monotonically

10For the Wilcoxon signed-rank tests, the one-sided p-value= 0.0625 is the lowest possible value for four
paired observations. So we adopt it as the threshold for the statistical significance.
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Figure 4: Sender Strategy - Individual Classification

while more subjects are classified as “neither”. Note that the difference between the two

rightmost columns in each panel is whether to include 1 for separating and 0 for pooling

(the second rightmost column) or not (the first rightmost column). Thus, the difference in

proportion between these two columns reveals the proportions of subjects using the fully

truthful strategy and the complete babbling strategy, respectively.11

We say that senders in Treatment A use a separating strategy more than those in Treat-

ment B if 1) the proportion of sender subjects classified as separating is larger in Treatment

A than in Treatment B and 2) the proportion classified as pooling is smaller in Treatment A

than in Treatment B regardless of the cutoff one adopts. For a statistical test, we take the

distributions of the proportions of sender subjects classified as separating/pooling with the

support {0,0.1, ..,0.9,1} for different cutoffs employed ({0, ...,0.5} for pooling and {0.5, ...,1}

11By definition, the area below the white horizontal line indicates the proportion of those who use the
non-monotonic strategy, i.e., Pr(“Type 1”∣Type 1)<Pr(“Type 1”∣Type 0). In our classification exercise, we
classify those subjects using a non-monotonic strategy as pooling, because the vast majority of senders are
following the literal meaning of the message in their message strategy and the modal receiver’s response is
also monotonic; the number of sender subjects who use a reasonably informative non-monotonic strategy
(defined as Pr(“Type 1”∣Type 1)-Pr(“Type 1”∣Type 0)< −0.25) is 2 in ST, 1 in MT, and 0 in both LC and
HC treatments.
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for separating)12 and compare them with respect to the first-order stochastic-dominance us-

ing the BD test. The test confirms that senders in Treatment ST use a pooling strategy

significantly more and a separating strategy significantly less than those in Treatments LC

and HC (p-values = 0.0038 and 0.0030 for the Null and p-value = 0.9317 and 0.9207 for the re-

versed Null hypothesis). Moreover, senders in Treatment ST use a pooling strategy more and

separating strategy less than those in Treatments MT with marginal statistical significance

(p-values = 0.0741 for the Null and p-values = 0.9236 for the reversed Null hypothesis). The

BD tests further reveal that no other pairs have a FOSD relationship. Partially accepting

Hypothesis 1(b), these results are summarized as follows.

Result 1 (Sender Strategy).

(a) In all treatments, the proportion of message “Type 1” conditional on type 1 is higher

than that conditional on type 0.

(b) Senders in Treatments LC, MT and HC use a separating strategy more and pooling

strategy less than those in Treatment ST.

Our results suggest that senders largely behave in line with cursed equilibrium theory,

with the caveat that they tend to over-communicate in ST. This indicates the presence of

residual behavioral effects that are not fully explained by the simulated level of cursedness.

6.2 Receiver Behavior

Figure 5 presents the cumulative distributions of the receiver’s action conditional on the

message, aggregated across all 20 rounds of all sessions of each treatment. The versions with

probability distributions are provided in Figure 14 (treatment level) and Figure 16 (session

level) in Online Appendix C.13

One immediate observation across all treatments is that the cumulative distribution con-

ditional on Type 0 is first-order stochastically dominated by that conditional on Type 1.

The BD test reveals that the first-order stochastic dominance relationship is significant in

all treatments (p-values < 0.0001 for the Null and p-values > 0.8761 for the reversed Null

hypothesis). This observation indicates that substantial proportions of receiver subjects may

12Graphically, the distribution can be obtained by flipping the pooling curve in Figure 4 around the
vertical axis and combine it with the separating curve.

13In Treatments LC and HC, there are two types of receivers, True R and False R. When making their
decisions, they did not know if their role was True R or False R. Thus, we do not distinguish between the
two roles for our data analysis in this section.
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Figure 5: Receiver Strategy

use separating strategies in all our treatments. We thus have to reject Hypothesis 2(a) for

Treatment ST.

It is apparent that the gap between the two conditional distributions is larger in some

treatments than in others. The average ∆R scores are 0.431, 0.519, 0.456, and 0.282 for

Treatments, ST, MT, LC, and HC, respectively. The Mann-Whitney tests using session-level

data as independent observations reveal that ∆R
HC are marginally or significantly smaller than

each of ∆R
ST, ∆R

MT, and ∆R
LC (one-sided, p-values= 0.0818, 0.0303, and 0.0023, respectively).

We conduct additional analysis on the degree of separation in the receiver’s strategy

using individual-level data as follows. First, we calculate the average action taken by each

individual receiver subject conditional on receiving the message “type 1” and that condi-

tional on the message “type 0”. The larger the difference, the more separating the strategy

the receiver subject is using. For example, the fully separating strategy should generate a

difference of 5 while the fully pooling strategy should generate a difference of 0. Second, we

classify each individual receiver subject as a separating category if the calculated difference

is larger than a cutoff. Similarly, we classify each individual receiver subject as a pooling

category if the calculated difference is smaller than a cutoff. As the cutoff for the separat-

ing (pooling) category becomes higher, the proportion of receiver subjects in the separating

(pooling) category weakly decreases (increases).
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Figure 6: Receiver Strategy - Individual Classification

Figure 6 presents the results from the individual-level analysis. The horizontal axis of each

panel indicates the different cutoffs for the separating category (first row) and the pooling

category (second row). The black area at the top shows the proportion of individual receiver

subjects who belong to the separating category. The dark gray area at the bottom shows

the proportion of individual receiver subjects who belong to the pooling category. The light-

gray area in-between indicates the proportion of subjects who belong to neither of them. For

example, looking at the bottom-right panel of Figure 6 for Treatment HC, when the cutoff

values are 2.5 and 2.5 for both separating and pooling categories, the figure shows that the

proportions are 26% for separating and 74% for pooling. As we move to the right, the cutoff

for separating increases, and that for pooling decreases with the increment of 0.5. As a result,

the proportions for both separating and pooling categories decrease (weakly) monotonically

while more subjects are classified as “neither”. Note that the difference between the two

rightmost columns in each panel is whether to include 5 for separating and 0 for pooling

(the second rightmost column) or not (the first rightmost column). Thus, the difference

in proportion between these two columns reveals the proportions of subjects using a fully

separating strategy and a fully pooling strategy.14

14By definition, the area below the white line reveals the proportion of those who use the non-monotonic
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The BD tests confirm that receivers in Treatment HC use a separating strategy signifi-

cantly less and a pooling strategy significantly more than those in Treatments ST, MT, and

LC (p-values = 0.0119, 0.0001, and 0.0076 for the Null and p-values = 0.9558, 0.9665, and

0.8825 for the reversed Null hypothesis).15 The BD tests further reveal that no other pairs

have a FOSD relationship. Partially accepting Hypothesis 2, these results are summarized

as follows:

Result 2 (Receiver Strategy).

(a) In all treatments, the cumulative distribution of receiver’s action conditional on “Type

0” first-order stochastically dominates (FOSD) that conditional on “Type 1”.

(b) ∆R
HC < ∆R

ST, ∆R
MT, and ∆R

LC.

(c) Receivers in Treatment HC use a pooling strategy more and separating strategy less

than those in Treatments ST, MT and LC.

This result is not driven by a difference in subjects’ degree of understanding/comprehension

of the instructions. Figure 17 in Online Appendix C shows that the distributions of actions

taken by participants in Round 0 under the prior belief (when receiving no message from a

sender) are almost identical across treatments. Indeed, the Kolmogorov-Smirnov (KS) tests

using the individual data as independent observations confirm that the distributions are not

significantly different from each other (two-sided, p-values > 0.6227). This finding indicates

that the treatment effects observed in receiver behavior cannot be attributed to subjects

misunderstanding the strategic environment.

Compared with our hypotheses on receiver behavior, we observe two deviations: over-

communication in ST and a reversal of the expected separation ranking between HC and ST.

Because HC senders send more informative messages than ST senders, this pattern suggests

that HC receivers discount messages more heavily than is implied by the simulated level of

cursedness.

strategy, i.e., E[Action∣“Type 1”] < E[Action∣“Type 0”]. In our classification exercise, we classify those
subjects using a non-monotonic strategy as pooling, because the vast majority of Receivers are following the
literal meaning of the message in their action strategy and the modal sender strategy is also monotonic.

15This result remains robust regardless of how we define the fully separating strategy of the receiver.
For instance, one could define a fully separating strategy as one in which an individual receiver consistently
takes a higher action upon receiving the message “Type 1” compared to when they receive the message
“Type 0” such that the action distribution conditional on receiving message “Type 0” has no overlap with
that on receiving “Type 1.” According to this definition, the proportion of receivers employing the fully
separating strategy in Treatment HC is 44.7%, while this proportion increases to 60.7%, 62.2%, and 69.2%
in Treatments ST, MT, and LC, respectively.
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6.3 Outcome

Figure 7 presents the cumulative distributions of the receiver’s action conditional on the

state, aggregated across all 20 rounds of all four sessions of each treatment. The versions

with probability distributions are provided in Figure 10 (treatment level) and Figure 12

(session level) in Online Appendix C.
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Figure 7: Outcome Comparison

Consistent with the receiver strategy data, we also observe a clear first-order-stochastic

dominance relationship between the two conditional distributions in all treatments. For each

treatment, we cannot reject the Null that the cumulative distribution conditional on Type

1 first-order stochastically dominates that conditional on Type 0 (p-values < 0.003), while

rejecting the reversed Null (p-values > 0.8601). It implies that a strictly higher action is taken

in type 1 than in type 0. This observation is true not only at the aggregated treatment level

but also at the session level. It implies that we have “over-communication” in Treatment

ST where theory predicts no first-order stochastic dominance relationship between the two

conditional distributions.16 Thus, we have to reject Hypothesis 3(a) partially.

In spite of the first-order-stochastic-dominance relationship observed in all treatments,

16Over-communication is well documented in the cheap-talk literature. See Blume, Lai, and Lim (2019b)
for the most recent survey of the literature.
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it is apparent that the gap between the two conditional distributions is larger in some

treatments than others, implying that the degrees of separation in outcome differ across

treatments. The average ∆O scores are 0.0896, 0.154, 0.189, and 0.112 for Treatments,

ST, MT, LC, and HC, respectively. Moreover, the Mann-Whitney tests using session-level

data as independent observations reveal that ∆O
LC is larger than ∆O

ST and ∆O
HC with the

difference marginally significant (one-sided, p-values= 0.05714 and 0.0688, respectively). It

turns out that ∆O is strictly below the theoretical values reported in the previous section

for Treatments MT, LC, and HC, implying that we have “under-communication” in these

three treatments. This observed under-communication phenomenon is in sharp contrast to

the over-communication phenomenon observed in ST. It is challenging to reconcile these two

contradictory observations.17

Result 3 (Outcome).

(a) In all four treatments, the cumulative distribution conditional on type 0 is first-order

stochastically dominated by that conditional on type 1.

(b) The outcome obtained in Treatment LC is more separating than those obtained in

Treatments ST and HC.

6.4 Welfare

Figure 8 reports the average earnings of True Rs in each treatment. Figure 19 in Online

Appendix C provides the session-level earning data. The average earning for True Rs is

highest in Treatment LC and lowest in Treatment ST. The MW tests show that the average

earning for True Rs is significantly lower in Treatment ST than that in each of Treatments

MT, LC, and HC (one-sided, p-values = 0.0143, 0.0571, and 0.0121, respectively). The

MW tests further show that the average earning for True Rs is higher in Treatment LC

than that in each of Treatments ST, MT, and HC (one-sided, p-values = 0.0571, 0.0857,

and 0.1474, respectively) although the difference is either only marginally significant or

statistically insignificant. As presented in Figure 18 in Online Appendix C, for each of

17In particular, it is surprising to see that the outcome obtained in Treatment HC is almost perfect
babbling because the theoretical environment guarantees the existence of truth-telling equilibrium. The
session-level outcome data presented in Figure 12 (Online Appendix C) further illustrates that an almost
perfect babbling outcome was obtained in Session 1 and an outcome reasonably close to pooling was obtained
in Sessions 3 and 4. To our knowledge, we are one of a few exceptions in the literature to report behavior
observed in the laboratory that is more consistent with the babbling equilibrium prediction in the presence
of a truth-telling equilibrium. Blume, Lai, and Lim (2019a) report the laboratory data that the observed
behavior in the lab is more consistent with the non-truthful but informative equilibrium predictions even
when there is a truthful equilibrium.
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Treatments LC and HC, the average earnings for False Rs seem substantially smaller than

those for True Rs, although the differences are not statistically significant.
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Figure 8: Average Earning

Result 4 (Earnings). True Rs’ average earning is significantly smaller in Treatment ST

than in each of Treatments MT, LC, and HC. Moreover, True Rs’ average earning is higher

in Treatment LC than in each of Treatments ST, MT, and HC, although the differences are

not significant.

To summarize, our experimental data confirm that senders adapt their behavior based on

the perceived cursedness of the receiver. We further observe two contradictory phenomena:

the typical over-communication in Treatment ST and the unfamiliar under-communication in

Treatments MT, LC, and HC, in which over- and under-communication are defined relative

to the most informative equilibrium in the corresponding environment. Moreover, receivers

in HC use a separating strategy less frequently and a pooling strategy more frequently than

those in ST, despite the fact that the truth-telling equilibrium exists in HC but not in ST.

The observed under-communication cannot be rationalized by merely introducing a truth-

telling preference or lying cost. A level-k model a la Crawford (2003) in which the level-0

sender is assumed to be truthful also fails to rationalize our experimental data.18 In the next

section, we assume that our experimental participants may bring some intrinsic cursedness

to the lab and explore whether a sensible distribution of intrinsic cursedness could account

for the observed departure from the theoretical predictions.

18The assumption that the naivety of level-0 senders is modeled as truthful is well-accepted in the cheap-
talk literature. Online Appendix E presents predictions from the level-k model. In any level above zero, the
unique prediction is that the sender babbles in Treatment ST and tells the truth in all three other treatments.
With the assumption of truthful level-0 senders, the best-response structure of the level-k model leaves no
room for the receiver to not fully comprehend the information provided by the sender.

29



7 Intrinsic Cursedness

Assume that subjects may have brought some intrinsic cursedness to the experiments in

addition to the cursedness induced by introducing fictitious R’s. Let χ0 denote the subject’s

intrinsic cursedness. Then, the effective cursedness subjects exhibit in the experiments,

denoted as χ̂, would be given by

χ̂ = 1 − (1 − χ)(1 − χ0) = χ + χ0 − χχ0,

in which χ is the induced cursedness in the experiment. Table 3 summarizes the receiver’s

optimal strategy in the separating equilibrium as a function of the intrinsic cursedness χ0 in

the strategic communication game. In addition, the range of χo that supports the separating

equilibrium in each treatment is listed in the last column.19 In the table, ⌊x⌋ denotes the

largest integer that does not exceed x. We need this operator since the action space is

discretized.

Treatment χ̂ φ Given “1” Given “0” Range of χ0

ST χ0 0 ⌊5.5 − 1.5χ0⌋ ⌊0.5 + 3.5χ0⌋ [1
7 ,

1
3] ∪ [3

7 ,1)
MT χ0 0.9 ⌊5.5 − 1.5χ0⌋ ⌊107

74 + 189
74 χ0⌋ [0,1)

LC 0.2 + 0.8χ0 0 ⌊5.2 − 1.2χ0⌋ ⌊1.2 + 2.8χ0⌋ [0, 1
6] ∪ [2

7 ,1)
HC 0.5 + 0.5χ0 0 ⌊4.75 − 0.75χ0⌋ ⌊2.25 + 1.75χ0⌋ [0,1)

Table 3: Receiver’s Optimal Responses Given the Messages Received in the Most Informative
Equilibrium

Based on Table 3, we conduct a simple calibration exercise as follows. We assume that χ0

follows a truncated normal distribution over [0,1]. We say that a distribution of the intrinsic

cursedness χ0 rationalizes our data if its theoretical predictions meet the following four

criteria: 1) the proportion of senders who use the separating strategy is lowest in Treatment

ST (ST1 Criterion); 2) welfare is lowest in Treatment ST (ST2 criterion); 3) welfare is highest

in Treatment LC (LC criterion); and 4) the degree of separation in the receiver’s actions is

lowest in Treatment HC (HC criterion). The left panel of Figure 9 illustrates the range

of mean (horizontal axis) and variance (vertical axis) of the truncated normal distribution,

which χ0 follows, that rationalizes our data. This graph demonstrates that a concentration

of χ0 around 0.46 can rationalize our data. Furthermore, when the variance exceeds a certain

threshold (greater than 0.46), the range of means that can rationalize our data consistently

expands. This finding suggests that incorporating individual heterogeneity in the degree

of intrinsic cursedness makes it easier to rationalize our data. The right panel of Figure 9

19We present the exact calculations in Online Appendix B.
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Figure 9: Compatible Normal Distributions with (Left) and without (Right) the LC Criterion

exhibits the range of mean and variance values for χ0 that can rationalize our data while

disregarding the LC criterion. This is motivated by the fact that the welfare in Treatment

LC is not statistically different from that in Treatment MT. The results demonstrate a

considerably wider range, indicating that it is much easier to rationalize our data without

applying the LC criterion.

Our finding that χ0 concentrated around 0.46 can rationalize the experimental data aligns

with the results of Szembrot (2018), who estimated a similar degree of intrinsic cursedness to

be 0.45. However, the empirical analysis conducted by Eyster and Rabin (2005) suggests that

the estimated degrees of intrinsic cursedness in trading games and common value auctions

are generally higher than 0.45, displaying a significant level of individual heterogeneity.

We believe that this discrepancy may be attributed to the explicit nature of the correla-

tion between the sender’s strategy and their private information in both our communication

game and the signaling game examined in Szembrot (2018), compared to other types of

games.20 In our view, the participants’ belief hierarchy about how cursed each of them is

can drastically affect their behavior in the game. For example, a bidder in a common value

English auction may perceive other bidders to be less cursed than they really are, and thus,

she may bid higher and appear to be more cursed.

20This intuition was shared by Shengwu Li during an early-stage discussion, and we are grateful for his
valuable input.
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Online Appendices

A Optimal Mediation with a Cursed Receiver

Simple algebra yields that under any feasible µ(θ∣0) and µ(θ∣1),

∑
θ∈ΘS

Eµ[−(y − θ)2∣θ]π(θ) = −(1 + χ)(1 − p)Eµ[y∣0] + χp(1 − p). (A.1)

Thus, the optimal mediation problem can be reduced to the following:

min
µ(⋅∣0),µ(⋅∣1)

Eµ[y∣0]

subject to 0 ≤ Eµ[(y − b)2∣1] −Eµ[(y − b)2∣0] ≤ 2(Eµ[y∣1] −Eµ[y∣0])

y = χp + (1 − χ) pµ(y∣1)
pµ(y∣1) + (1 − p)µ(y∣0) , if pµ(y∣1) + (1 − p)µ(y∣0) > 0.

Note that since

Eµ[y∣0] = χp + (1 − χ)Eµ [ pµ(y∣1)
pµ(y∣1) + (1 − p)µ(y∣0)∣0] ≥ χp,

the separating equilibrium, if exists, is a feasible mediated equilibrium and achieves the welfare

bound. Hence, if b ≤ 1−χ
2 + χp, no additional mediation is needed and the ex-ante welfare under

optimal mediation is −χ2p(1 − p).

Now suppose b > 1−χ
2 + χp. To further analyze the optimal mediation problem, we need a

series of lemmas. Let y = χp + (1 − χ) and y = χp. For the simplicity of exposition, we will write

µ0, µ1,Eµ0[⋅], and Eµ1[⋅] instead of µ(⋅∣0), µ(⋅∣1),Eµ[⋅∣0], and Eµ[⋅∣1], respectively.

Lemma 1. If (µ0, µ1) satisfies the receiver’s IC constraint, so does α(µ0, µ1) + (1 − α)(δy, δy) for

any α ∈ [0,1].

Proof. When α = 1 the claim is trivial. Suppose α ∈ [0,1). Let (ν0, ν1) = α(µ0, µ1)+ (1−α)(δy, δy).
Suppose pµ1(y) + (1 − p)µ0(y) > 0. Then for (µ0, µ1) to satisfy the receiver’s IC, we need

0 =
pµ1(y)

pµ1(y) + (1 − p)µ0(y)
,

which implies that µ1(y) = 0. When pµ1(y) + (1 − p)µ0(y) = 0, we also have µ1(y) = 0.

Thus, by construction, ν1(y) = 0, which implies that

y = χp + (1 − χ)
pν1(y)

pν1(y) + (1 − p)ν0(y)
.
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Similarly, we have

y = χp + (1 − χ) pν1(y)
pν1(y) + (1 − p)ν0(y)

.

Thus (ν0, ν1) satisfies the receiver’s IC.

Lemma 2. Suppose b > 1−χ
2 + χp. If (µ0, µ1) is a solution to the optimal mediation problem, then

Eµ1[(y − b)2] = Eµ0[(y − b)2].

Proof. Let (µ0, µ1) be a solution to the problem. When b > 1−χ
2 + χp, the separating equilibrium

cannot be sustained. It follows that Eµ0[y] > y = χp. By way of contradiction assume Eµ1[(y−b)2] >
Eµ0[(y − b)2]. Consider ν0 = αµ0 + (1 − α)δy and ν1 = αµ1 + (1 − α)δy for some α ∈ (0,1).

Since b > 1−χ
2 + χp, we have

(y − b)2 − (y − b)2 < 0 < 2(y − y).

Thus, since (µ0, µ1) is feasible, we have

Eν1[(y − b)2] −Eν0[(y − b)2] ≤ 2(Eν1[y] −Eν0[y]).

Thus, if Eµ1[(y − b)2] > Eµ0[(y − b)2], we can pick α ∈ (0,1) such that

α(Eµ1[(y − b)2] −Eµ0[(y − b)2]) + (1 − α)((y − b)2 − (y − b)2) = 0.

Furthermore, we know that

Eν0[y] = αEµ0[y] + (1 − α)y < Eµ0[y].

The corresponding (ν0, ν1) is thus feasible and achieves a higher level of welfare than (µ0, µ1), a

contradiction.

By the previous lemma, if b > 1−χ
2 + χp, the optimal mediation problem reduces to

min
µ0,µ1

Eµ0[y]

subject to Eµ0[(y − b)2] = Eµ1[(y − b)2]

Eµ0[y] ≤ Eµ1[y]

y = χp + (1 − χ) pµ1(y)
pµ1(y) + (1 − p)µ0(y)

, if pµ1(y) + (1 − p)µ0(y) > 0.

The following proposition summarizes the solution to the optimal mediation problem.
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Proposition 4. When b ≤ y+y
2 , optimal mediation induces the separating equilibrium. When b ≥

y+p
2 , optimal mediation induces the babbling equilibrium. When

y+y
2 < b < y+p

2 , it is optimal for the

mediator to recommend 2b−y when θ = 0; recommend y with probability φ and 2b−y with probability

1 − φ, in which

φ = p − 2b + y
2p(y − b) . (A.2)

In this case, the ex-ante welfare of the receiver under optimal mediation is (1 − p)[(1 − χ − 2b)(1 +
χ) + χ(2 + χ)p].

Proof. From the sender’s point of view, if (µ0, µ1) is feasible, the ex ante welfare is

(1 − p)Eµ0[−(y − b)2] + pEµ1[−(y − 1 − b)2]

= Eµ0[−(y − b)2] + p(Eµ1[−(y − 1 − b)2] −Eµ1[−(y − b)2])

= Eµ0[−(y − b)2] + 2pEµ1[y] − p(2b + 1)

= Eµ0[−(y − b)2] + 2(p − (1 − p)Eµ0[y]) − p(2b + 1)

= Eµ0[−(y − b)2] − 2(1 − p)Eµ0[y] − p(2b − 1),

which, together with (A.1) and the fact that the sender’s ex ante welfare will be b2 lower than the

receiver’s, yields

−(1 + χ)(1 − p)Eµ0[y] + χp(1 − p) − b2 = Eµ0[−(y − b)2] − 2(1 − p)Eµ0[y] − p(2b − 1). (A.3)

Let yθ = Eµθ[y] and σ2
θ = varµθ(y). The equation above reads

σ2
0 = (p − y0)(y0 + 1 − χ + χp − 2b). (A.4)

It follows from (A.3), y1 ≥ y0, p = py1 + (1 − p)y0, and σ2
0 ≥ 0, that

y0 ≥ 2b − 1 + χ − χp = 2b − y. (A.5)

Since we need y0 ≤ p, if 2b − y ≥ p, i.e. b ≥ y+p
2 , then optimal mediation induces the babbling

equilibrium.

Suppose
y+y

2 < b < y+p
2 . Then by (A.1) and (A.5), the receiver’s ex ante welfare cannot be strictly

larger than

−(1 + χ)(1 − p)(2b − y) + χp(1 − p) = (1 − p)[(1 − χ − 2b)(1 + χ) + χ(2 + χ)p]. (A.6)
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To show that the upper bound is tight, we now construct the optimal policy. Let y0 = 2b − y. It

follows that σ2
0 = 0. Hence if θ = 0, the mediator always recommends y0. If θ = 1, for the receiver’s

IC to hold, the mediator can only recommend y0 or y. Suppose the mediator recommends y with

probability φ, we need

p((1 − φ)y0 + φy) + (1 − p)y0 = p

which reads

φ = p − y0

p(y − y0)
.

Verify that

χp + (1 − χ) p(1 − φ)
p(1 − φ) + 1 − p = 2b − y = y0.

Thus, the receiver’s IC is satisfied. It suffices to check that the sender’s IC is satisfied, which is

trivial. Thus, the bound is tight.

B Calculations for Table 3

Given x ∈ R, let ⌊x⌋ denote the greatest integer less than or equal to x. When there is a tie from

the receiver’s point of view, assume that the larger action will be chosen for simplicity.

We consider ST, LC, and HC first. In the separating equilibrium, given message “1”, the

receiver’s posterior is 1 ⋅ (1 − χ̂) + 0.7 ⋅ χ̂ = 1 − 0.3χ̂, and thus action ⌊5.5 − 1.5χ̂⌋ will be chosen;

given message “0”, the receiver’s posterior is 0 ⋅ (1 − χ̂) + 0.7 ⋅ χ̂ = 0.7χ̂, and thus action ⌊3.5χ̂ + 0.5⌋
will be chosen. The separating equilibrium can be sustained if ⌊5.5 − 1.5χ̂⌋ + ⌊3.5χ̂ + 0.5⌋ ≥ 6 and

⌊5.5 − 1.5χ̂⌋ > ⌊3.5χ̂ + 0.5⌋, which yields χ̂ ∈ [1
7 ,

1
3] ∪ [3

7 ,1). Outside this range, only the pooling

equilibrium can be sustained.

Now consider MT. The Bayesian updates conditioning on the messages are respectively Pr(θ =
1∣m = 1) = 1 and Pr(θ = 1∣m = 0) = 7

37 . Thus, given message “1”, the receiver’s posterior is

1 ⋅ (1 − χ̂) + 0.7 ⋅ χ̂ = 1 − 0.3χ̂, and thus action ⌊5.5 − 1.5χ̂⌋ will be chosen; given message “0”, the

receiver’s posterior is 7
37 ⋅(1−χ̂)+0.7⋅χ̂ = 70+189χ̂

370 , and thus action ⌊107+189χ̂
74 ⌋ will be chosen. Incentive

compatibility is always ensured. We just need χ̂ < 1.
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C Additional Figures and Tables
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Figure 11: Outcome (CDF): Aggregate Level
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Figure 17: Elicited Action Under the Prior Belief
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E Level-k Predictions

This section is devoted to providing predictions from the level-k model a la Crawford (2003).

• Standard Talk (ST) Prediction: Sender types pool with “Type 1” and Receiver takes the

ex-ante ideal action.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 0g 5g
1 or higher “Type 1” “Type 1” 0g (off-path) 3g or 4g

• Mediated Talk (MT) Prediction: Sender types separate by sending truthful messages and

Receiver takes 1g and 5g, respectively.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 1g 5g
1 or higher “Type 0”∗ “Type 1” 1g 5g

∗Indifference is broken by a lexicographical preference for truth-telling.

• Low Cursedness (LC) Prediction: Sender types separate by sending truthful messages and

Receiver takes 1g and 5g, respectively.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 1g 5g
1 or higher “Type 0”∗ “Type 1” 1g 5g

∗Indifference is broken by a lexicographical preference for truth-telling.

• High Cursedness (HC) Prediction: Sender types separate by sending truthful messages and

Receiver takes 2g and 4g, respectively.

k
Sender Receiver

Type 0 Type 1 “Type 0” “Type 1”

0 “Type 0” “Type 1” 2g 4g
1 or higher “Type 0”∗ “Type 1” 2g 4g

∗Indifference is broken by a lexicographical preference for truth-telling.
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