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Abstract

We conduct an experimental study of a “Getting Permission” game. Each player selects
a number from a finite, ordered set. The maximum of the numbers selected determines
payoffs. This game typically has multiple Nash Equilibrium outcomes. For the games
that we study, however, there is a unique payoff that survives a strong equilibrium
refinement. Our results demonstrate that this payoff is a good prediction; it is the
modal payoff in every game that we study. At the aggregate level, we demonstrate
that, consistent with the theory, the maximum increases when the number of players
increases. At the individual level, we classify players into behavioral types. Players are
heterogenous, but the largest group consists of players who behave as our refinement
predicts. We use cross-validation methods to test the out-of-sample performance of
our classification. Subjects behave consistently in identical games roughly 80% of the
time. Out of sample predictions across all games are accurate more than 75% of the
time. Limiting the number of behavioral types sometimes improves out of sample
performance.
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1 Introduction

Game-theoretic solution concepts frequently fail to provide good predictions in simple strate-
gic settings. Leading examples are dictator games, ultimatum games, public goods games,
and the centipede game.1 This paper demonstrates that strong refinements sometimes make
good predictions. We examine a simple class of games that have multiple Nash equilibria. A
rather demanding equilibrium refinement makes a unique prediction for the game. We show
that the refinement provides a good description of behavior. We classify individual sub-
jects into behavioral types based on their decisions in a subset of experimental games. We
then test out-of-sample predictions using the classification. Our classification makes accurate
predictions and avoids overfitting.

The main results on aggregate behavior confirm our expectations, but we believe that they
are worth reporting for three reasons. First, the results may provide insights into when narrow
assumptions about rationality and restrictive solution concepts do provide good descriptions
of behavior. Second, the game we study has applications (see (Hu and Sobel, 2022, Section
II)) and our results contribute to substantive discussions. Third, our experiments permit
us to identify differences in individual behavior, classify agents into groups according to the
theory that best describes their behavior, and to test the classification by making out-of-
sample predictions.

We study the simultaneous-move version of the “Getting Permission” game in Hu and
Sobel (2022). In the game there are a finite number (greater than one) of experts and a finite
number of projects. The projects are ordered. A non-strategic manager must gain approval
for a project from at least one expert. The manager prefers higher projects to lower projects.
The experts’ preferences are arbitrary. Experts simultaneously announce a project that they
will support. The manager implements the highest project supported. There is always a
Nash Equilibrium in which the outcome is the highest-ranked project. This outcome arises
if, for example, all experts support it. Typically, there are other Nash equilibrium outcomes.
It turns out that these equilibria are Pareto-ranked from the perspective of the experts:
All experts prefer smaller Nash equilibrium outcomes to larger Nash equilibrium outcomes.
Hu and Sobel (2022) demonstrate that the expert-preferred Nash equilibrium outcome is
(for generic payoffs) the only outcome that survives iterated deletion of weakly dominated
strategies.

Our strongest finding is that the largest equilibrium is a bad prediction. Players rarely
approve the manager’s preferred project when the game has another Nash equilibrium. In-
deed, when there are multiple Nash equilibrium outcomes, we find that our subjects typically
arrive at the Nash equilibrium that is best for the experts. This prediction is consistent with
theory.

Our model displays a trade off that arises in other contexts. The active players have
common preferences over equilibria, but these preferences are opposed to those of a designer.
In the mechanism-design literature, it is common to assume that the designer can select her
favorite equilibrium. The literature of communication with many Senders contains examples
of situations in which fully revealing equilibria exist if and only if there is more than one
Sender (see, e.g., Krishna and Morgan, 2001; Battaglini, 2002). Our results suggest that the

1Camerer (2003, Chapter 2) surveys evidence.
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designer’s favorite equilibrium or the fully revealing equilibrium may not be good predictions.2

There is another strong regularity in our aggregate data. Adding a player increases the
outcome. The qualitative conclusion that competition between experts will lead to more
approval is intuitive and holds under a wide range of behavioral assumptions. If one thinks
that whenever there is more than one expert, the highest project is approved, then adding a
second agent is strictly beneficial and adding additional agents does not change the recom-
mendation. If one predicts the outcome consistent with our refinement, then we can identify
(as a function of preferences) exactly how much an additional agent will increase the outcome.
The addition of a third expert may be strictly beneficial in this case. We identify situations
in which the addition of a third expert strictly increases the outcome.

Our data permit an investigation of individual behavior. We record decisions for each
individual in forty games in our main treatment. We study the extent to which an individual’s
behavior across games is predictable. We investigate a weak test of the hypothesis that
subjects behave consistently across games. Subjects in our main treatment play several
identical games twice. Subjects receive no feedback on outcomes and payoffs until they have
made all of their choices. We see no evidence that decisions depend on the order in which
subjects make decisions. In this environment, we ask the extent to which a subject will play
the same way in the same game. We find this to be the case roughly 80% of the time.3 The
weak test of consistency provides an upper bound to how predictable behavior is. For our
data, the upper bound is 80%. The paper investigates the extend we can approximate this
upper bound by using a subsample of the data to classify agents. We propose several different
behavioral models. These models include players who respond optimally to beliefs (variations
on level-1 and level-2 behavior) and players who play strategies that survive iterated deletion
of weakly dominated strategies. Each model provides a unique prediction for each game.

In order to classify agents, we fix a family of theories. We divide games into a training set
and a test set. We assign each individual to the theory that makes the most correct predictions
on the training set. We then evaluate the quality of the classification by computing how often
the theory’s prediction agrees with the plan on the test set. In this way, we obtain a score for
each family of theories. The score measures the quality of predictions obtained by using the
fixed family to classify behavior. Finally, we identify the family of theories that generates
the best performance on the test set.

We find that subjects are heterogeneous in that we obtain better predictions if we use
more than one theory. The vast majority of subjects make decisions consistent with our
refinement. Smaller subsets of players are best described by other theories. This analysis
generalizes our analysis of identical games. Our classifications for two-player games lead to
predictions that are correct about 80% of the time (approximately the same as the predictions

2Lai, Lim, and Wang (2015) and Vespa and Wilson (2016) experimentally investigate the multidimensional
cheap-talk game discussed in Battaglini (2002) and find that two senders communicate more than one.
However, their results do not demonstrate that the fully revealing equilibrium accurately describes subjects’
behavior in the laboratory.

3Agranov and Ortoleva (2017) is an experimental study designed to investigate whether players have a
preference for randomization. A subject exhibits a preference for randomization if he/she commits to making
different choices in the same circumstance. Nielsen and Rehbeck (2022) is an experimental study designed to
discover which choices subjects view as mistakes. Subjects have an opportunity to revise choices that violate
certain axioms. Subjects repeat choices and one of the axioms is a consistency condition that states choices
in the same situation should be identical.
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for identical games). Our classifications for (more complicated) three-player games are not as
good, but still accurately predict behavior roughly 75% of the time. Hence the classification
procedure enables us to make predictions for general games that approximate the ability to
make predictions in identical games.

Adding more theories cannot reduce the ability to describe performance on a training set.
We find, however, that adding theories can reduce the quality of predictions out of sample.
The non-monotonicity is the result of overfitting. An additional theory may be a good match
for data in a training set, but do less well on the test set. By optimizing over families of
theories, our classification procedure takes into account the possibility of overfitting. We find
that the best predictions come from using three or four theories.

Section 2 describes the model and some of its theoretical properties. Section 3 describes
our hypotheses. Section 4 describes the experimental design. Section 5 describes the results.
The appendices contain data and experimental instructions.

2 Framework

In Section 2.1 we introduce the model. In Section 2.2 we propose six common behavioural
theories that we conjecture our subjects adhere to. In Section 2.3 we describe how to best-
classify experimental subjects into each behavioural theory, and in turn how to evaluate each
of the classifications.

2.1 The model

We study the simultaneous-move version of the “Getting Permission” model of Hu and Sobel
(2022).4 In the model there are a finite number (greater than one) of experts and a finite
number (greater than one) of projects. The projects are ordered. A manager prefers higher
projects to lower projects but in order to implement a particular project the manager must
gain approval for that project from at least one expert. All experts simultaneously recommend
a project, and the manager implements the highest project recommended. While the experts’
preferences are arbitrary, given the manager’s preferences, his behaviour is given by a rule
that “chooses the highest recommended project”, so all strategic elements of the environment
can be represented as a game between only the experts.5

More formally, the model is given as follows. There is a finite set I of players. All
players share a finite common set of pure strategies, X, where X is completely ordered with
smallest element x and largest element x̄.6 We denote by xi the strategy choice of player
i. Let X = XI denote the strategy space, and let x = (x1, . . . , xI) ∈ X denote a strategy
profile. For a strategy profile x, each player i’s payoff is a real valued number denoted ui(x).
We write M(x) = maxi∈I xi for the maximum element of x, and given each player’s payoff is

4Hu and Sobel (2023) contains more general results.
5In some applications, Hu and Sobel (2022) interpret the smallest strategy as the status quo and the

remaining strategies as “new” projects. Thus when an expert wishes to support no project (i.e., maintain the
status quo), she recommends the minimum project. For other applications of the model we refer the reader
to Section II of Hu and Sobel (2022).

6In our experimental treatments the strategy set will either be the set of positive integers up to 4 or the
set of positive integers up to 5.

3



determined by the maximum element of x, we will often abuse notation and write that player
i’s payoff from strategy x is ui(M(x)) (i.e., the domain is a scalar and not an I-dimensional
vector). The payoff functions ui are arbitrary except for a genericity condition: for every
player i, ui(x) = ui(x

′) if and only if x = x′.
A pure-strategy Nash equilibrium is a strategy profile x∗ = (x∗

1, . . . , x
∗
I) with the property

that ui(M(x∗)) ≥ ui(M(xi,x
∗
−i)) for all xi and all i. (Our focus in this paper is on pure-

strategy Nash equilibria so going forward we will omit the word “pure”.) If x∗ is a Nash
equilibrium, we refer to M(x∗) as the equilibrium outcome.

For any equilibrium profile x∗, any strategy profile x such that every player i chooses
xi ≤ x∗

i with at least two distinct players j and j′ choosing xj = xj′ = M(x∗) is a Nash
equilibrium with the same outcome as x∗. In particular, the maximum element in X, x̄, is
always an equilibrium outcome. Typically there are other Nash equilibria. Hu and Sobel
(2022) show that the pure-strategy Nash equilibrium outcomes to this model are Pareto
ranked. In particular, Hu and Sobel (2022) show that if x∗ and x∗∗ are both equilibrium
outcomes and x∗∗ ≥ x∗, then all players prefer x∗ to x∗∗. To see this, observe that if any
player preferred the outcome x∗∗ to x∗, then she could deviate by choosing the strategy x∗∗

thereby inducing the outcome x∗∗. There must be a minimum equilibrium outcome because
the common strategy set X is completely ordered and finite. We define π∗ as the smallest
outcome that can be supported in equilibrium:

π∗ := min{π ∈ X : ui(π) ≥ ui(xi) for all xi > π and all i}.

It is immediate that if π is an equilibrium outcome, then π ≥ π∗. Whenever π∗ < x̄ there
are multiple equilibrium outcomes.

A strategy is weakly dominated if there exists another strategy that is a weakly better
response to any distribution over opponents’ strategies and a strictly better response to
one distribution over opponents’ strategies. Hu and Sobel (2022) analyze the implications
of applying iterated deletion of weakly dominated strategies (IDWDS) to this model. We
refer the reader to Hu and Sobel (2022) for a formal definition of IDWDS. Informally, the
refinement states that we look for equilibria in a reduced game in which all weakly dominated
strategies have been removed. There are many ways in which to arrive at a reduced game.
In one procedure, players simultaneously discard all weakly dominated strategies in the first
stage, leading to a new, partially reduced game. In subsequent stages, players simultaneously
discard all weakly dominated strategies relative to the partially reduced game obtained in
the previous stage. The process continues until it reaches a stage in which no strategies are
discarded. For finite games, this procedure is well defined, terminates in a finite number of
rounds, and when it terminates, no player has a weakly dominated strategy. Other procedures
are possible and, in general, different procedures can give rise to different reduced games (see
for example Kohlberg and Mertens (1986)). Hu and Sobel (2022) show that for the class
of games that we study in this paper, every procedure results in a game with the unique
equilibrium outcome π∗.

Hu and Sobel (2022) prove the following.

Proposition 1. If x is a strategy profile that survives IDWDS, then M(x) = π∗.

Proposition 1 identifies a unique equilibrium that survives IDWDS. Hu and Sobel (2023)
extends the result to non-generic preferences and incompletely ordered X. It follows from the
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definition of π∗ and Proposition 1 that IDWDS selects the players’ preferred Nash equilibrium.
Going forward will refer to the outcome π∗ as the best outcome.

We conclude this section with two observations. First, note that while Proposition 1
guarantees that IDWDS always predicts a unique (equilibrium) outcome, it need not make
a prediction about the strategies used by all players (other than that no player chooses a
strategy greater than π∗). Second, when a player is added (holding the preferences of the
other players fixed), the best equilibrium outcome cannot possibly decrease (because there
are more constraints in the minimization problem that defines π∗). That is, adding a player
makes the existing players (weakly) worse off since doing so (weakly) increases the outcome
that survives IDWDS.

2.2 Behavioral Theories

In general, IDWDS is not a good predictor of behavior, as evidence from well-known strategic
settings like the centipede game demonstrates. Given this, we suggest other behavioral rules
that individuals may follow.

We postulate that subjects will employ level-k reasoning (Nagel, 1995; Stahl and Wilson,
1994, 1995; Crawford, Costa-Gomes, and Iriberri, 2013). Level-k supposes that players can
be categorized by the “depth” of their strategic thought. The set-up begins by presupposing
a näıve type, referred to as level 0, and assumes that for k ≥ 1, level-k players best respond
given the (potentially erroneous) hypothesis that all other players are level k−1. The shared
belief in the behavior of level-0 players determines the behavior of all levels.

We assume that level-0 players choose the strategy that yields their most preferred out-
come. This assumption is well justified in our environment because it implies that level-0
players choose their strategy without regard to the choices of others.7 Our assumption on
level 0 provides a unique starting point for behavior provided that preferences are generic.
The prescription for levels k ≥ 1 is not unique if higher-level players have multiple best
responses. This situation arises if Player i believes that another player will choose strategy
x that Player i prefers to any strategy larger than x. In this case, it is a best-reply for i
to choose any strategy less than or equal to x. In order to make precise predictions, we
introduce tie-breaking rules.

We have some discretion in the selection of the tie-breaking rules and we propose two rules
that we believe fit well with this environment. For the first rule, which we term “favorite,”
we assume that an individual selects the most preferred outcome from those over which they
are indifferent. Under the second rule, termed “pivotal,” we assume that individuals select a
best-response conditional on being pivotal.

Formally the tie-breaking rules are defined as follows. Let BRi(m) denote the set of
Player i’s best responses when m is the largest action of i’s opponents. BRi(·) needs not be
single-valued.

7A similar assumption on the level-0 behavior appears in the 11-20 money-request game (Arad and Ru-
binstein, 2012) where level-0 players choose 20 which guarantees the highest payoff when ignoring the choices
of others. However, the literature on level-k behavior sometimes defines level-0 behavior differently. For ex-
ample, many studies assume that level-0 players behave randomly. See Crawford, Costa-Gomes, and Iriberri
(2013, Section 4) for examples and justification. The literature on sender-receiver games assumes that level-0
senders are truthful and level-0 receivers are credulous (Crawford, 2003).
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Definition 1 (Tie-breaking rules). Let m denote the highest strategy of everybody other than
i. Define two tie-breaking rules.

1. Favorite: BRf
i (m) = argmaxxi∈{1,...,m} ui(M(xi,x−i)), where x−i = (x, . . . , x)

2. Pivotal: BRp
i (m) = m − n∗ where m = n∗ ∈ BRi(m − n) for n = 0, . . . , n∗, and

BRp
i (m) > m− n∗ − 1.

The favorite tie-breaking rule, Rule 1 above, requires Player i to respond optimally to the
minimum strategy x−i subject to the constraint that Player i cannot choose an action greater
than m. Under the pivotal tie-breaking rule, Rule 2 above, Player i begins by imagining that
the maximum strategy of the opponents is m− 1. If Player i’s best response to m− 1 is m,
then we define BRp

i (m) to be m. Otherwise, we assume that the other players’ maximum
is m − 2 and continue. The process is well defined and always selects a unique element of
BRi(m).

Both tie-breaking rules can be justified by appealing to formal models of mistakes. The
strategy selected by favorite is the unique best response to beliefs that places probability ε > 0
on x being chosen by each opponent and the probability 1 − ε placed on m. The strategy
selected by pivotal is the unique best response to beliefs that, for sufficiently small ε, place
probability εn on m − n being the maximum of the opponents’ strategies for n = 1, . . . ,m
(and the remaining probability on the maximum being m). While we believe that both
models of mistakes are plausible, as with common models of how people err, both are ad hoc.

The two tie-breaking rules do not always specify the same strategy. Suppose, for example,
that the highest strategy chosen by everyone other than Player i is 4, and suppose further
that Player i prefers outcome 1 to 4 to 3 to 2. Clearly, any strategy less than or equal to 4
is a best-response for Player i (i.e., BRi(4) = {1, 2, 3, 4}). Note however that BRf

i (m) = 1
whereas BRp

i (4) = 3.
We propose that individuals employ one of the two tie-breaking rules above and that

no individual is greater than level 2. We also allow for individuals who follow IDWDS.
We need to refine IDWDS because, as with the benchmark level-k framework, sometimes
there is more than one action that is consistent with IDWDS. In order to resolve possible
multiplicity, we select the strategy that survives the sequential procedure in which, at each
stage, all players simultaneously delete all of their weakly dominated strategies (relative to
strategies that have yet to be deleted) and continue this kind of maximal deletion until no
weakly dominated strategy remains. We call this Maximal IDWDS or MIDWD. Hence we
consider a total of six behavioral rules.8 They are presented as follows:

Definition 2 (Behavioral Theories). We propose the following behavioral theories.

1. L0: Choose the strategy corresponding to the preferred outcome.

2. Lf
1 : Best-respond to L0, employing the favorite tie-breaking rule when indifferent.

8As mentioned before we conjecture that individuals adhere to one of the six theories. Each theory
has a behavioral motivation and has received attention in the literature. We considered other possible
theories, including level-k behavior anchored by random level 0 and models of other-regarding preferences
(for example, maximizing the sum of payoffs). None of the additional theories that we investigated led to
improved classification results.
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3. Lf
2 : Best-respond to Lf

1 , employing the favorite tie-breaking rule when indifferent.

4. Lp
1: Best-respond to L0, employing the pivotal tie-breaking rule when indifferent.

5. Lp
2: Best-respond to Lp

1, employing the pivotal tie-breaking rule when indifferent.

6. MIDWD: Choose a strategy corresponding to the maximal iterated deletion of weakly
dominated strategies.

In the next section, we show how we classify individuals in this way and we then test the
classification by considering how subjects’ behavior accords out of the sample.

2.3 Classification

We classify individual subjects into groups according to which theory best describes their
behavior. This subsection describes the classification procedure in general. We then specialize
to the six theories described in Definition 2.

We let T denote the number of periods and write Gt for the game played in period t.

1. Fix a set of behavioral theories L that provide unique predictions for each game.

2. Letting the total number of games played by a subject be T , we split the set of T games
into a training set of size J and the test set of size T − J .

3. Fix an integer j < J , and let σj denote a subset of size j integers chosen from the first
J integers.

4. For each theory ℓ ∈ L write ℓ(Gt) for the strategy specified by theory ℓ in game Gt. Let
ci(Gt) denote the strategy chosen by Player i in game Gt. Define the disparity between
theory ℓ and Player i’s choices ci, D, on the subset of games σj from the training set as

D(ℓ, ci;σj) :=
∑
t∈σj

1 {ℓ(Gt) ̸= ci(Gt)}

5. Classify Individual i by the behavioral theories Bi(j) ⊂ L that minimizes the disparity
between their choices and the theory in the j games played in periods in σj. Let bi(j)
be the cardinality of Bi(j)

6. Letting ℓi denote a theory that minimizes the disparity with i’s choice behavior on the
training set σj, compute a score s for how often ℓi predicts i’s choice behavior on the
T − J games in the test set. That is,

s(ℓi, ci;σj) :=
∑
t/∈σj

1 {ℓi(Gt) = ci(Gt)}

This score is equal to the number of times that Player i’s behavioral theory on a training
set of size j correctly predicts behavior in the test set. Let

ŝ(ci;σj) =
∑

ℓi∈Bi(j)

s(ℓi, ci;σj)/bi(j)
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7. Repeat Steps 5 and 6 for N − 1 randomly selected training subsets of cardinality j.
That is, the analyst now has N subsets of size j, σ

(1)
j , . . . , σ

(N)
j with each training subset

of size j having an associated score on the test set denoted by ŝ(σj).

8. Average the scores obtained from the N training sets, σ
(1)
j , . . . , σ

(N)
j . That is,

s̄i =
1

N

N∑
n=1

ŝ(σ
(n)
j )

Let us discuss some features of the setup. First, the procedure is a forecast-evaluation
or cross-validation exercise that can be applied to many discrete environments.9 We classify
individuals based on the theory that performs best on a given subset of the set, and then we
test that classification on the test set by comparing, in each game of the test set, the theory
specified with observed behavior.

Second, in order for this evaluation process to be well defined, we need to specify the set
of possible behavioral theories, the identity of the test set, the values of j and N , and how we
assign scores. We selected several behavioral rules that correspond to ideas discussed in the
literature. However, the procedure is general in that different assumptions about behavior
could generate different theories. One could also imagine statistical methods that identify
decision rules that fit the data.

Third, adding theories that do not describe any subject’s behavior should not change our
results. No subject will be categorized as playing according to a theory if another theory
describes behavior accurately more often. Hence we expect that if we include all of the
“likely” theories and j is sufficiently large, adding theories will not change our results.10

Given a training set, we can always find a theory that describes behavior perfectly. In
general, such a theory will not score high on the test set.

Our basic analysis uses a specific version of this procedure. All treatments were one of
two kinds: 2-player games that lasted for 40 periods and 3-player games that lasted for 60
periods.11 With the 40 round treatment, we split the rounds into the first 30 rounds and the
final 10 rounds. With the 60 round treatment, we split the rounds into the first 45 rounds
and the final 15 rounds. The first set of rounds is the training set and the final set of rounds
is the test set. We describe treatments in more detail in Section 4.

3 Hypotheses

In this section, we discuss our hypotheses. We divide the hypotheses into two kinds: hy-
potheses concerning aggregate behavior and those concerning individual behavior, discussed
in Section 3.1 and 3.2 respectively. The theoretical predictions generated by the IDWDS

9For general discussions, see Stone (1974) or Hastie, Tibshirani, and Friedman (2009)[Chapter 7].
10We do not provide a model of what determines which theories to include and what constitutes a “large

enough” value of j.
11There were 10 different games for each kind of treatment. The reason for the difference in number of

periods is that we wanted every subject to play each game 4 times, twice in each position. We describe
treatments in more detail in Section 4.
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refinement motivate the aggregate hypotheses. The hypotheses about individual behavior
describe ways in which individuals may make predictable choices described by behavioral
theories introduced in Section 2.2.

3.1 Aggregate Properties

Our first two hypotheses, Hypothesis 1 and Hypothesis 2, are motivated by Proposition 1.

Hypothesis 1. If π∗ < x̄, then the modal outcome of the game will be less than x̄.

Hypothesis 2. The modal outcome of each game will be π∗

Proposition 1 demonstrates that whenever π∗ < x̄, the (unique) outcome of the game
that survives iterative deletion of weakly dominated strategies is π∗. Hypothesis 1 states
that players will avoid the outcome x̄ when it is weakly dominated to do so. It is tested
by checking if the frequency of the outcome with π∗ is significantly higher than that of
other outcomes across all games. Hypothesis 2 makes the stronger assertion that players will
actually arrive at the outcome that survives IDWDS. We evaluate Hypothesis 2 by comparing
the frequency of the outcome π∗ to that of other outcomes.

Hypothesis 3. The modal strategy selected by players survives IDWDS.

Hypothesis 3 is stronger than Hypothesis 2 because when the strategy profile is x, the
outcome of the game is M(x). So, provided that xi ≤ π∗ for all i and xj = π∗ for some
j, M(x) = π∗. That is, there is no need for every player to select a strategy that survives
IDWDS for the outcome to be π∗. This involves checking, for each game and every player in
each game, if the frequency of the strategy that survives IDWDS is higher than that of other
strategies.

We now consider how aggregate behavior in the two-player games might differ from that
in the three-player games. While adding a player changes the game, it does not change the
preferences over the outcomes of the original players. We will consider two-player games
with players 1 and 2. Documenting behavior in these games, we then consider a three-player
game with Players 1, 2, and 3 (where 1 and 2 have the same preferences).12 Adding a player
cannot reduce π∗ and in fact, often increases it. Hence Hypothesis 4 follows provided that
players reach the best equilibrium outcome.

Hypothesis 4. For each game, adding a player increases the outcome.

We test this hypothesis by comparing the distribution of outcomes to the two-player
games with the outcomes of the analogous three-player game with Player 3 added. The
hypothesis will be rejected if the distribution of the outcomes to the two-player games does
not first-order stochastically dominate those of the three-player games.

12In our experiments, we call them Players R, G, and B, respectively.

9



3.2 Individual Properties

We would like to be able to use observations of behavior to predict behavior in other situa-
tions. The following is a minimal consistency condition.

Hypothesis 5. A subject will play the same strategy in identical games.

Hypothesis 5 assumes that subjects treat a particular payoff matrix in the same way no
matter where in the sequence of games it appears. Hypothesis 5 rules out experimentation,
learning, hedging behavior, or boredom. For subjects who played the same game twice, we
compare the distribution of actions in each.

Hypothesis 6. Test scores are no higher than consistency scores.

Hypothesis 6 suggests that violations of consistency are less likely than violations of a
more precise behavioral rule. The test scores describe how well we can predict a player’s
behavior in general. Consistency measures how well we can predict a player’s behavior in an
identical game. If a player does not play the same game in the same way (due to random
errors, a desire to randomize, or order effects), then we do not expect the player to follow a
more complicated behavioral rule consistently.

Hypothesis 7. Prediction scores when j = 1 are lower than for j = 6.

Hypothesis 7 is a statement about the heterogeneity of the population. If all players
behaved according to a single rule, then we could predict behavior well without using a
training set. If individuals fall into different groups, then we need some training data to
classify them. We test this hypothesis by checking to see if test scores assuming that the
population uses one behavioral theory are lower than if more theories are available.

Hypothesis 7 suggests that people can be predictable, but heterogeneous. Hypothesis 3
suggests that the largest proportion of subjects play in a way that supports the best equilib-
rium.

Hypothesis 8. Average scores on the training set are greater than average scores on the test
set.

Hypothesis 8 is the weak statement that theories fit better in the sample than out of the
sample.

Hypothesis 9. Three-player games are harder to predict than two-player games.

Hypothesis 10. Five-strategy games are harder to predict than four-strategy games.

Hypotheses 9 and 10 are statements about the complexity of different games. To test
Hypothesis 9 we compare test scores from two-player and three-player games. To test Hy-
pothesis 10 we compare test scores from four- and five-strategy games. We expect higher
prediction scores on two-player games (relative to three-player games) and on four-strategy
games (relative to five-strategy games).

Hypothesis 11. Most people are characterized as behaving according to MIDWDS.

Hypotheses 11 is a strong statement about player behavior. We evaluate the hypothesis
by finding the fraction of players best described by MIDWDS and checking the quality of
this classification to make out-of-sample predictions.
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4 Experimental Design

In this section, we describe the experiment. Section 4.1 describes the environment faced
by the subjects. In Section 4.2 we discuss the treatments (i.e., which games were chosen).
Section 4.3 summarizes the data collection procedures.

4.1 Experimental Environment

This subsection explains how we described the permission game introduced in Section 2 to
experimental subjects. Consider a city with two citizens, R and B. The map of the city is
presented in Figure 1 below.

District K

District H

3

2

1

4

4

Figure 1: City Map

The city has hired a contractor to build a bridge that connects its two districts Kowloon
(K) and Hong Kong (H). A bridge is beneficial to both citizens because they both live in
District K while they work at the same office in District H. The map in Figure 1 indicates
the location of R’s residence by the red house, the location of B’s residence by the blue house,
and the location of their office by the building. The contractor has identified four feasible
locations for the bridge labelled 1, 2, 3, and 4. The bigger the label number, the longer the
bridge. The contractor’s earnings depend on which bridge is built. The longer the bridge the
more the contractor earns.

Each citizen wants a short distance between his residence and the office. If the contrac-
tor builds the bridge 1/2/3/4, then R will earn 200/100/150/50 points, and B will earn
100/200/150/50 points, respectively. Importantly, the contractor cannot simply build any
bridge he likes.13 In order for the contractor to build a bridge, he needs to get permission
from at least one of the citizens R and B. Table 1 summarizes the points each citizen earns
from each bridge built.

13In every round of the experiment, each subject’s screen presented a table summarizing the points from
each bridge built but not the corresponding map of the city. For more details, please see the experimental
instructions presented in Appendix C.
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Bridge Built R B

4 (the longest) 50 50
3 (2nd longest) 150 150
2 (3rd longest) 100 200
1 (the shortest) 200 100

Table 1: Points Earnings from Each Bridge Built

4.2 Treatments

Our experimental design involves two treatments: Treatments 2P and 3P. Treatment 2P, our
baseline treatment, contains ten 2-player games. All 2-player games share the experimental
environment described in the previous section while the number of bridges and the preferences
of citizens may differ across games. Treatment 3P contains twenty 3-player games. All 3-
player games also share the same environment that is slightly modified to include one more
citizen G. Table 5 in Appendix A presents the ordinal preferences profile of ten games used
in Treatment 2P and the ordinal preferences profile of twenty games used in Treatment 3P.
Each row refers to a game in Table 5. The players’ preferences are given by some permutation
of the integers from 1 to 5. The first integer is the most preferred outcome for the player,
and so on.

In Treatment 2P, each participant plays each of the ten 2-player games four times, twice in
each role, with the games and role therein appearing in random order. Thus each treatment
has 40 rounds (10 games × 2 roles × 2 repetitions) in total. The ten 2-player games differ
from each other with respect to the players’ ordinal preferences and the number of actions
(bridges) available for each player. Among the ten games, six of them are five-action games
(Games A1-A6) and the rest are four-action games (Games B1-B4). Table 6 in Appendix A
documents what strategy a player would choose for each of the behavioral theories proposed
in Definition 2 for the ten 2-player games. There are three games with π∗ = 5, two games
each with π∗ = 2, 3, 4, and one game with π∗ = 1. The data from Treatment 2P will allow
us to test all but Hypothesis 4.

Treatment 3P is primarily designed to test Hypothesis 4 and serve as a robustness check.
It comprises twenty 3-player games created by introducing (two different versions of) a third
player to each of the ten two-player games in Treatment 2P. Each participant engages in all
twenty 2-player games, assuming each role in a random order. As a result, Treatment 3P
consists of a total of 60 rounds (20 games × 3 roles). The preference of the additional player
is deliberately chosen to ensure that the inclusion of the third player leads to meaningful
changes in the outcomes predicted by the IDWDS. The theoretical predictions of the twenty
3-player games are presented in Table 8 in Appendix A. Table 7 in Appendix A illustrates
the changes in the best prediction π∗ resulting from the addition of the third player for each
game.

4.3 Procedure

We conducted the experiments in English using oTree (Chen, Schonger, and Wickens, 2016)
and Zoom in March 2022 at the Hong Kong University of Science and Technology. We
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conducted six sessions for each treatment and thus had 12 sessions in total. Each session
had 15-21 participants. We recruited 218 participants in total, and each of them participated
in only one session. We collected 40 observations per individual in Treatment 2P and 60
observations per individual in Treatment 3P. The experimental session lasted approximately
70 minutes. The average earning was HKD 176.3 (≈ USD 22.6). The instructions for
Treatment 2P can be found in Appendix C.

Upon invitation, participants were instructed to find a quiet location with reliable inter-
net access to remain for the entire duration of the experiment. They joined the designated
Zoom meeting using their personal laptop or desktop computer. It was mandatory for all
participants to keep their video turned on throughout the experiment. The Zoom settings
did not allow for chat communication among participants. To provide the experimental
instructions, each participant received an individual oTree link through the Zoom chat mes-
sage. The instructions were also read aloud to ensure that all participants had access to the
same information. A between-subject design was utilized, and a random matching protocol
was employed. No feedback was given at the end of each round. Towards the conclusion of
the experimental sessions, participants were randomly paired, and one game was selected at
random from each pair to calculate their earnings.

5 Results

We report experimental results in this section. All results reported are based on the ob-
servations from all rounds of decision making because we did not provide any feedback in
between rounds, and the overall behavior is stable across rounds. Figures 7 and 8 presented
in Appendix B illustrate the stable time-trend in terms of the average earnings and amount
of time spent.

5.1 Results on aggregate behavior

Figure 2 presents a bar chart that describes the outcomes of three related games from both
treatments. It contains three bars: the left bar represents the outcome of a 2-player game
(Game A1), and the other two bars represent the outcomes of the two 3-player games (Games
A11 and A12) generated by adding a third player to the corresponding 2-player game pre-
sented on the left. Figure 9 in Appendix B reports ten bar charts for all games.

Focus on the left bar in each chart describing the outcomes of the 2-player games. Among
Game As (with five actions), three games have a substantial proportion of outcomes with
x̄ = 5 (Games A1, A2, and A4), and they are the only three 2-player games with five actions
in which theory predicts that π∗ = x̄. Among Game Bs (with four actions), there are only
two games (B1 and B2) that have a non-negligible proportion (≈ 15%) of outcomes with
x̄ = 4. Even in those two games, however, the modal outcomes are strictly below π∗. The
outcomes from the 3-player games with four actions are also consistent with the prediction
of x̄ only when π∗ = x̄. In all games in which theory predicts that π∗ = x̄ (Games A11, A12,
A21, A22, A31, A41, A42, A51, A61, B11, B12, B22, B31, and B41), x̄ is the modal outcome.
Moreover, there is no other game in which x̄ is the modal outcome. This observation provides
strong evidence in favor of Hypothesis 1. Thus, we have our first result:
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Figure 2: Outcomes – Games A1, A11, and A12

Result 1. In all games with π∗ < x̄, the modal outcome of the game is less than x̄.

Recall that both Hypotheses 1 and 2 are motivated by Proposition 1. Hypothesis 1 is
a weaker statement. The permission game always has a Nash Equilibrium with outcome x̄.
Proposition 1 demonstrates that whenever π∗ < x̄, the (unique) outcome of the game that
survives iterative deletion of weakly dominated strategies is π∗. Hypothesis 1 states that
players will avoid full approval when it is weakly dominated to do so. Hypothesis 2 makes
the stronger assertion that players will actually arrive at the outcome that survives IDWDS.
Our data confirm this assertion. As presented in Figure 9, the modal outcome observed in
every game is π∗.

Result 2. In all games, the modal outcome is π∗.

Figure 3: Percentage of Strategies Surviving IDWDS in Treatment 2P

Hypothesis 3, which states that the modal strategy selected survives IDWDS, is stronger
than Hypothesis 2 because when the strategy profile is x, the outcome of the game is M(x).
Provided that xi ≤ π∗ for all i and xj = π∗ for some j, M(x) = π∗. There is no need for
every player to select a strategy that survives IDWDS. Figure 3 presents the percentage of
observations that are consistent with the strategies that survive IDWDS for each game in
Treatment 2P. Figure 6 presented in Appendix A reports the percentages for Treatment 3P.
Tables 9 and 10 in Appendix A present the percentage of observations (compliance rates)
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that are consistent with each of the strategies predicted by all six theories for Treatments 2P
and 3P, respectively.14

Result 3. For the vast majority of the games, the modal strategies observed survived IDWDS.

Result 3 underestimates the extent to which players use strategies that survive IDWSD.
Taking into account that multiple strategies are consistent with following the maximal it-
erated deletion of weakly dominated strategy, 85% of observations comply with IDWDS in
Treatment 2P and 93% comply in Treatment 3P. They are substantially higher than the ID-
WSD compliance rates for randomly selected strategies, 36% and 62% for 2P and 3P games,
respectively.

Overall, the reported percentage is 85% in the 2P games but there are two exceptions:
Player 1 in A6 and Player 2 in A1. In game A6, the player who does not conform is not
pivotal. That is, in this game inconsistent individual behavior does not influence the outcome.
In A1, it is possible that the players are avoiding the unique equilibrium outcome (5), which
is dominated by a non-equilibrium outcome. In Treatment 3P, the observed strategies are
more consistent (than in Treatment 2P) with the strategies that survive IDWDS (93%). The
higher overall compliance rate is mainly driven by the fact that IDWDS is more permissive
in the 3-player games.

We conducted a regression analysis to investigate possible explanations for variations in
the compliance rate and Table 2 reports the result for Treatment 2P. Table 2 in Appendix A
reports the results for Treatment 3P.

Term Estimate SE p-value 5% CI
(Intercept) 0.759 0.041 0.000 (0.679, 0.839)
Complexity1 -0.187 0.016 0.000 (-0.218, -0.156)
Preference1 0.038 0.011 0.001 (0.016, 0.061)
Pivotal1 0.298 0.030 0.000 (0.238, 0.357)
Complexity2 -0.156 0.016 0.000 (-0.187, -0.124)
Preference2 0.077 0.011 0.000 (0.055, 0.100)
Pivotal2 0.340 0.030 0.000 (0.280, 0.399)

a. SE refers to the standard error.
b. CI refers to the confidence interval.
c. Complexityi represents the number of local maxima in Player i’s preference profile.
d. Preferencei represents the payoff that Player i receives from the best prediction π∗.
e. Pivotali is a binary variable that takes the value 1 if the Player i’s decision determines the
outcome and 0 otherwise.

Table 2: Linear Regression Analysis for Compliance Rates - Treatment 2P

The analysis identifies three factors that influence compliance. First, if a player’s decision
determines the outcome (pivotality), the player is more likely to select a strategy consistent
with IDWDS. Second, if the BEST prediction π∗ yields a higher payoff for a player (prefer-
ence), the player is more likely to comply. Third, if a player’s preference profile has fewer

14We decided to report findings on IDWDS when discussing aggregate results and MIDWDS when dis-
cussing individual results. MIDWDS and IDWDS differ because MIDWDS makes a unique selection from
IDWDS. Because we require theories to be single valued, we must modify IDWDS to make it single valued.
MIDWDS is a convenient selection. We discuss IDWDS when describing aggregate results because it is a
more fundamental concept. Because any strategy consistent with MIDWDS must be consistent with IDWDS,
more subjects comply with IDWDS than MDIWDS.

15



local maxima (complexity), the player is more likely to comply. These three categories are
conceptually orthogonal to each other, and adding interaction terms does not change the
qualitative results. Moreover, the results are consistent between Treatments 2P and 3P.

Hypothesis 4 conjectured that adding a player would increase the outcomes based on Table
7 in Appendix A. The data confirm this hypothesis. The bar charts presented in Figure 9 in
Appendix B confirm that adding the third player strictly increases either the modal outcome
itself (e.g., in the comparison between Game A3 and A31) or the percentage of the same
modal outcome (e.g., in the comparison between Game A3 and A32) for all games.

Result 4. Adding a player increases the outcome.

5.2 Results on individual behavior

Figure 4: Consistency in Treatment 2P

Figure 4 reports the consistency rate aggregated across all individuals for each game in
Treatment 2P. Recall that every subject in Treatment 2P played each game two times in
each role. We say that his/her choice is consistent in a game if the same strategy is chosen
in identical games, and inconsistent otherwise. The overall consistency rate is slightly above
80%, but there are four cases with which the consistency rate is substantially lower than
the average: Player 2 in A1 and A6, and Player 1 in B2 and B4. In the latter three cases,
players who are categorized as L1 and L2 type are indifferent between multiple actions. As
we suggested in our discussion of Result 2, inconsistency in A6 and B2 may be due to a
player recognizing that her action is not pivotal.

Result 5. Subjects play the same strategy in identical games with probability 0.8.

Consistency requires that when a player faces the same decision problem, she behaves
in the same way. The best prediction we can make is that a subject will repeat her earlier
choice the second time she plays a game. Consistency is far from perfect, however. Subjects
play different strategies in identical games 20% of the time. Failure to be consistent could
be due to errors, indifference, boredom, experimentation, learning, hedging, or a desire to
randomize.

Result 5 is a minimal consistency condition. We would like to be able to use observations
of behavior to predict behavior in other situations. Predictable players will play the same
game in the same way. Of course, the hypothesis assumes that subjects treat a particular
payoff matrix in the same way no matter where in the sequence of games it appears.
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Now we report the results from our cross-validation exercise. Table 12 in Appendix B
presents the test and training scores for each possible combination of the six behavioral
theories. The scores reported are the averages from 100 randomly selected subsets of size 30
for the training set and size 10 for the test set in the 2P games, and size 45 for the training
set and size 15 for the test set in the 3P games.

Result 6. Test scores are below consistency scores.

Result 6 corresponds to Hypothesis 6. Consistency scores are indeed higher than test
scores, but the difference is quite small. This suggests that we can attribute most of our
failure to predict behavior to baseline randomness. Subjects fail to play according to the rule
that best describes their behavior at essentially the same rate that they fail to play identical
games in the same way.

Although test scores are below consistency scores, they are not much below. Players
use the same strategy in the same game roughly 80% of the time. Players play according
to the category assigned to them roughly 79% of the time. It is plausible to view 80% as
an upper bound of the accuracy of our predictions. Predictions based on our classifications
approximate this upper bound, but we cannot classify behavior without using a training set,
which permits us to make different predictions for different subjects. The predictions of con-
sistency hypothesis hold uniformly for all subjects (and therefore do not require observation
of behavior on a training sample).

It is natural to try to relate consistency with other behavior. In two-player games we
can rank players by how well they are classified – the number of instances in which their
decisions coincide with the prediction of the theory that best describes their behavior (strong
consistency). We can also rank players by their consistency – the number of instances in which
they make the same choice in identical situations (weak consistency). We would expect the
two notions of consistency to be (at least) weakly positively correlated because all of our
theories predict identical behavior in identical games. Figure 10 in Appendix B presents the
correlation between them. The Spearman coefficient is 0.457 (moderate-to-strong degree of
correlation).15

Result 7. Different agents are best described by different behavioral rules.

Size Best Subset Test Score Training Score
1 L2-p 0.7824 0.7674
2 L0, L2-p 0.7866 0.7839
3 L0, L2-f, L2-p 0.7915 0.7942
4 L0, L1-f, L2-f, L2-p 0.7919 0.7987
5 L0, L1-f, L2-f, L1-p, L2-p 0.7890 0.8006
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.7838 0.8082

Table 3: Test and Training Scores form the Best Subset of Each Size - Treatments 2P & 3P

We expect training scores to be higher than test scores because we select theories to do
well on the training set. This property does not hold uniformly: Test scores are higher when

15The Spearman coefficient is lowered to 0.380 (moderate to strong correlation) when we do count behavior
in games that are repeated only once. This difference comes from the fact that all theories imply consistency.
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there are only one or two theories. We attribute this to elements in training sets as being
more difficult than elements in test sets. We can confirm (both by computation and theory)
that if one compares training and test scores averaged over randomly selected sets, then
training scores are always greater than test scores.

Result 7 provides evidence in favor of our Hypothesis 7. Table 3 presents the test and
training scores from the best subset of each size where data from both treatments is used
for the classification. Tables 13 and 14 in Appendix B provide the test scores calculated
based on each treatment separately. We obtain higher classification scores when there is
more than one theory. The best single theory is L2-p, which has a test score of .7824. This
score increases to .7919 when we can classify agents using L0, L1-f , and L2-p as well. When
we limit attention to only three-player games with five strategies (see Table 18 in Appendix
B), the highest test score comes from the one-theory set of L2-p. For this fraction of the
sample, Hypothesis 7 fails.

Result 8. Scores on the training sets are higher than scores on the test set.

Result 8 confirms Hypothesis 8. The best family of theories predicts correctly 79.19%
of the time. The corresponding score on the training set is 79.87% The (one-sided) paired-
sample Wilcoxon test reveals that we can reject the null hypothesis that these two values are
the same, in favor of the alternative that the difference is significant (p-value = 0.0898).16

We expect the training score to be higher because we select the theories that best fit the
training set. The fact that our test scores are close to the training scores suggests that we
have approximated the upper bound on how well we can organize the data.

Result 9. Scores are higher in two-player games than in three-player games.

Tables 13 and 14 in Appendix B show that the scores on three-player games are about
3 percent lower than the test scores on two-player games. Result 9 suggests that two-player
games are simpler than three-player games in the sense that we are able to make better
classifications.

Result 10. Scores in four-strategy games are essentially identical to scores in five-strategy
games.

Tables 15, 16, 17, and 18 in Appendix B report test scores separately for four-strategy
games and five-strategy games. In contrast to Hypothesis 10, Result 10 suggests that four-
strategy games are no simpler than five-strategy games in the sense that classification results
are nearly identical (approximately 79% in each case). On one hand, this result is encour-
aging, because it suggests that our theories may help organize observations in games with
larger strategy sets. On the other hand, we are skeptical that we will predict behavior as
accurately in games with hundreds of strategies.

Result 11. The set of theories that maximize test scores usually does not include MIDWD.

16For this analysis, we compare the training score from the best subset and the corresponding test score for
each individual. Then using the individual scores as independent observations, we conduct the paired-sample
Wilcoxon test.
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Result 11 demonstrates that Hypothesis 11 does not hold in general.17 Iterated deletion
of weakly dominated strategies makes good predictions in many cases, but variations of level-
2 behavior, which agree with the weak dominance prediction frequently, always appear as
one of the best theories, while MIDWD does not. Observe that MIDWD removes weakly
dominated strategies using a particular order. In general, more strategies are consistent with
the removal of weakly dominated strategies (78.2% in Treatment 2P and 83.2% in Treatment
3P).18

Figure 5: Type Distributions

Figure 5 presents the distribution of behavioral types based on the first- and second-best
subsets, as well as the highest-scored subset that involves MIDWD.19 One feature of our
characterization results is that the test score is maximized using four theories. In both two-
and three-player games adding a fifth or sixth theory (slightly) reduces the quality of predic-
tions. This finding indicates that using too many theories could result in overfitting. Adding
a theory typically increases the score on the test sample,20 but it could lead to selecting a
theory that works well for the training set but makes poor out-of-sample predictions.

Another feature of our characterization is the family of rules that makes good predictions.
Level 0 behavior is part of the set of theories that best identify behavior. Not many agents
behave according to level 0, but there are 4-5% of individuals who are consistently categorized
as level 0 regardless of whether we use the first-, second-, or third-best subset. Note that on
its own, level 0 performs badly (the test score is 0.477).

5.3 Robustness

We conducted several robustness exercises.
We conducted our principal analysis using the first 30 and 45 games as a training set and

the final 10 and 15 games as a test set for Treatments 2P and 3P, respectively. We checked
to see whether these choices influenced the results.

17It does hold for two-player games and three theories and three-player games with four or five theories.
18One can see from Table 8 that L2-p specifies a weakly higher strategy than MIDWD for all players in

Treatment 3P and that when MIDWD and L2-p differ for a player, the outcome does not depend on whether
the player follows MIDWD or L2-p.

19Figure 11 reports the distribution in which both data from Treatments 2P and 3P are used for the
classifications.

20Either the new theory is better for a subject and training score goes up or it doesn’t influence score.
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Treatment 2P
30/10 Split 29/10 Split 28/10 Split

0.8109 0.8109 0.8141

Treatment 3P
45/15 Split 44/15 Split 43/15 Split

0.7815 0.7796 0.7790

Table 4: Robustness of Best Test Scores

We varied the number of training rounds from 28 to 30 for Treatment 2P and 43 to 45 for
Treatment 3P, and the result is reported in Table 4. Doing so changes the test scores slightly
(aggregate and for subsamples), but never by more than .4 percent. In some cases, the
best collection of theories changes, but the performance of the collection that we originally
identified as best is never more than .2 percent lower than the alternative.

Figure 12 illustrates the impact of increasing the size of the training set. It leads to
small improvements in test scores until the training set reaches about 30, after which the
scores level off. In three-player games, the best prediction shows no improvement in test
scores even when the training set is increased from a low number because the single-theory
L2-p approximates the best prediction. If we conduct the increase in the training set size
by comparing test scores using the first k games to train and varying k, the test scores are
not necessarily monotonically increasing (although the score for k = 1 is lower than k = 30).
Randomizing the membership of the training set smoothes the data. Average test scores
then increase with the cardinality of the training set.

It is possible that using two-player (or four-strategy) games in the training set will lead to
different predictions in two-player (four-strategy) games than in three-player (five-strategy)
games. We investigated whether the results of our classification exercise depends on the
number of players or strategies in either the training or test sets. We found no relationship
between the quality of test scores as a function of characteristics of either training or test
sets. That is, for example, we do not obtain worse predictions on five-strategy games if we
train only on four-strategy games. This finding suggests that we can reliably extrapolate
play in four-strategy games to forecast behavior in larger games.
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Appendices

A Prediction and Compliance Rates

Table 5: Experimental Games and Ordinal Preferences

Treatment 2P Treatment 3P

Game P1 P2 Game P1 P2 P3

A1 24153 13254
A11 24153 13254 13524

A12 24153 13254 41523

A2 24153 31524
A21 24153 31524 13524

A22 24153 31524 41523

A3 31245 14253
A31 31245 14253 13524

A32 31245 14253 41523

A4 13524 42315
A41 13524 42315 13524

A42 13524 42315 41523

A5 24153 31245
A51 24153 31245 13524

A52 24153 31245 41523

A6 24153 12345
A61 24153 12345 13524

A62 24153 12345 41523

B1 1243 1324
B11 1243 1324 2431

B12 1243 1324 3142

B2 1243 2134
B21 1243 2134 2431

B22 1243 2134 3142

B3 1324 2134
B31 1324 2134 2431

B32 1324 2134 3142

B4 1324 3142
B41 1324 3142 2431

B42 1324 3142 3142
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Table 6: Predictions - Treatment 2P

P1’s Strategy P2’s Strategy Outcome

Game L0 Lf
1 Lf

2 Lp
1 Lp

2 MID IDWDS L0 Lf
1 Lf

2 Lp
1 Lp

2 MID IDWDS π∗

A1 2 2 4 2 4 4 4,5 1 3 3 3 3 5 5 5

A2 2 4 4 4 4 4 4,5 3 3 5 3 5 5 5 5

A3 3 3 3 3 3 3 2,3,4 1 4 4 4 4 4 4 4

A4 1 5 5 5 5 5 5 4 4 4 4 4 4 2,4,5 5

A5 2 4 4 4 4 4 4 3 3 3 3 3 3 1,3,4 4

A6 2 2 2 2 2 2 2 1 1 1 1 1 1 1,2 2

B1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B2 1 1 1 1 1 2 1,2 2 2 2 2 2 2 2 2

B3 1 3 3 3 3 3 3 2 2 2 2 2 2 2,3 3

B4 1 1 1 3 3 1 1,2,3 3 3 3 3 3 3 3 3

a. Pi refers to the Player i for i = 1, 2.
b. L0 refers to the favorite action. Li with i > 0 refers to the best response to the opponent L(i−1).
c. MID refers to the strategy that survives the maximal iterated deletion of weakly dominated (MIDWD) strategies.
d. IDWDS refers to the strategy that survives any order of iterated deletion of weakly dominated strategies.
e. π∗ refers to the outcome from the best equilibrium for both players.

Table 7: Does adding Player 3 change the best outcome π∗?

Ordinal Preference Player 3’s Preference

Player 1 Player 2 13524 41523 2431 3142

A1 24153 13254 No No

N/A

A2 24153 31524 No No

A3 31245 14253 4 to 5 No

A4 13524 42315 No No

A5 24153 31245 4 to 5 No

A6 24153 12345 2 to 5 2 to 4

B1 1243 1324 1 to 4 1 to 4

B2 1243 2134
N/A

No 2 to 4

B3 1324 2134 3 to 4 No

B4 1324 3142 3 to 4 No

a. The entry “No” implies that adding the third player does not
change the best equilibrium prediction from its base two-player
game.
a. The entry “X to Y” implies that adding the third player changes
the best equilibrium prediction from X to Y.
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Figure 6: Percentage of Strategies Surviving IDWDS in Treatment 3P

Table 9: Compliance Rates - Treatment 2P

P1’s Strategy P2’s Strategy Outcome

Game L0 L1-f L2-f L1-p L2-p MID IDWDS L0 L1-f L2-f L1-p L2-p MID IDWDS π∗

A1 0.11 0.11 0.82 0.11 0.82 0.82 0.87 0.12 0.35 0.35 0.35 0.35 0.44 0.44 0.46

A2 0.05 0.86 0.86 0.86 0.86 0.86 0.92 0.16 0.16 0.79 0.16 0.79 0.79 0.79 0.80

A3 0.76 0.76 0.76 0.76 0.76 0.76 0.86 0.10 0.89 0.89 0.89 0.89 0.89 0.89 0.90

A4 0.03 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.93 0.88

A5 0.05 0.93 0.93 0.93 0.93 0.93 0.93 0.84 0.84 0.84 0.84 0.84 0.84 0.95 0.93

A6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.40 0.40 0.40 0.40 0.40 0.40 0.84 0.55

B1 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.69

B2 0.55 0.55 0.55 0.55 0.55 0.30 0.85 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.80

B3 0.11 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.90 0.82

B4 0.54 0.54 0.54 0.45 0.45 0.54 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97

Average 0.37 0.70 0.77 0.69 0.76 0.74 0.86 0.60 0.17 0.77 0.71 0.77 0.78 0.84 0.78

a. Pi refers to the Player i for i = 1, 2.
b. L0 refers to the favorite action. Li with i > 0 refers to the best response to the opponent L(i−1).
c. MID refers to the strategy that survives the maximal iterated deletion of weakly dominated (MIDWD) strategies.
d. IDWDS refers to the strategy that survives any order of iterated deletion of weakly dominated strategies.
e. π∗ refers to the outcome from the best equilibrium for both players.
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B Additional Figures and Tables
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Term Estimate SE p-value 5% CI
(Intercept) 0.779 0.031 0.000 (0.719, 0.839)
Complexity1 -0.118 0.011 0.000 (-0.139, -0.097)
Preference1 0.036 0.006 0.000 (0.025, 0.047)
Pivotal1 0.071 0.013 0.000 (0.045, 0.097)
Complexity2 -0.069 0.011 0.000 (-0.090, -0.048)
Preference2 0.048 0.006 0.000 (0.037, 0.059)
Pivotal2 0.077 0.013 0.000 (0.051, 0.103)
Complexity3 -0.088 0.011 0.000 (-0.109, -0.067)
Preference3 0.042 0.006 0.000 (0.031, 0.053)
Pivotal3 0.070 0.013 0.000 (0.044, 0.096)

a. SE refers to the standard error.
b. CI refers to the confidence interval.
c. Complexityi represents the number of local maxima in Player i’s preference profile.
d. Preferencei represents the payoff that Player i receives from the best prediction π∗.
e. Pivotali is a binary variable that takes the value 1 if the Player i’s decision determines the outcome and 0 otherwise.

Table 11: Linear Regression Analysis for Compliance Rates - Treatment 3P

Figure 10: Correlation Between Strong and Weak Consistencies

30



T
ab

le
12
:
T
es
t
an

d
T
ra
in
in
g
S
co
re
s
fo
r
A
ll
S
u
b
se
ts

of
B
eh
av
io
ra
l
T
h
eo
ri
es

S
iz
e

S
u
b
se
t

T
es
t
S
co
re
s

T
ra
in
in
g
S
co
re
s

S
iz
e

S
u
b
se
t

T
es
t
S
co
re
s

T
ra
in
in
g
S
co
re
s

1

L
0

0.
46
4
8

0
.4
6
7
1

2

L
0
,
L
1
-f

0
.6
5
8
5

0
.6
6
7
4

L
1-
f

0.
65
2
3

0
.6
5
9
6

L
0
,
L
2
-f

0
.7
2
9
9

0
.7
3
7
4

L
2-
f

0.
72
1
2

0
.7
2
6
4

L
0
,
L
1
-p

0
.7
0
4
0

0
.7
1
3
8

L
1-
p

0.
69
4
4

0
.7
0
1
6

L
0
,
L
2
-p

0
.7
8
0
5

0
.7
8
7
0

L
2-
p

0.
76
7
9

0
.7
7
2
2

L
0
,
M
ID

W
D

0
.7
5
0
2

0
.7
5
6
4

M
ID

W
D

0.
74
1
6

0
.7
4
4
8

L
1
-f
,
L
2
-f

0
.7
2
1
8

0
.7
3
5
3

3

L
0,

L
1-
f,
L
2-
f

0.
72
8
8

0
.7
4
3
0

L
1
-f
,
L
1
-p

0
.7
0
0
7

0
.7
1
7
6

L
0,

L
1-
f,
L
1-
p

0.
70
7
3

0
.7
2
5
3

L
1
-f
,
L
2
-p

0
.7
7
2
0

0
.7
8
6
2

L
0,

L
1-
f,
L
2-
p

0.
77
9
0

0
.7
9
3
9

L
1
-f
,
M
ID

W
D

0
.7
4
2
8

0
.7
5
8
2

L
0,

L
1-
f,
M
ID

W
D

0.
74
9
2

0
.7
6
5
7

L
2
-f
,
L
1
-p

0
.7
1
3
0

0
.7
4
8
2

L
0,

L
2-
f,
L
1-
p

0.
72
2
4

0
.7
5
8
0

L
2
-f
,
L
2
-p

0
.7
7
3
1

0
.7
8
7
0

L
0,

L
2-
f,
L
2-
p

0.
78
2
7

0
.7
9
7
7

L
2
-f
,
M
ID

W
D

0
.7
4
4
9

0
.7
5
8
7

L
0,

L
2-
f,
M
ID

W
D

0.
75
3
2

0
.7
6
8
9

L
1
-p
,
L
2
-p

0
.7
6
7
1

0
.7
7
9
3

L
0,

L
1-
p
,
L
2-
p

0.
77
7
9

0
.7
9
1
2

L
1
-p
,
M
ID

W
D

0
.7
2
8
7

0
.7
6
1
2

L
0,

L
1-
p
,
M
ID

W
D

0.
73
8
5

0
.7
7
1
4

L
2
-p
,
M
ID

W
D

0
.7
6
3
3

0
.7
8
8
3

L
0,

L
2-
p
,
M
ID

W
D

0.
77
3
8

0
.7
9
9
6

4

L
0
,
L
1
-f
,
L
2
-f
,
L
1
-p

0
.7
2
1
8

0
.7
5
9
8

L
1-
f,
L
2-
f,
L
1-
p

0.
71
4
7

0
.7
5
2
2

L
0
,
L
1
-f
,
L
2
-f
,
L
2
-p

0
.7
8
2
3

0
.8
0
1
1

L
1-
f,
L
2-
f,
L
2-
p

0.
77
5
1

0
.7
9
3
5

L
0
,
L
1
-f
,
L
2
-f
,
M
ID

W
D

0
.7
5
3
0

0
.7
7
3
4

L
1-
f,
L
2-
f,
M
ID

W
D

0.
74
6
3

0
.7
6
6
0

L
0
,
L
1
-f
,
L
1-
p
,
L
2
-p

0
.7
7
6
7

0
.7
9
5
4

L
1-
f,
L
1-
p
,
L
2-
p

0.
76
9
8

0
.7
8
7
8

L
0
,
L
1
-f
,
L
1
-p
,
M
ID

W
D

0
.7
3
9
3

0
.7
7
4
9

L
1-
f,
L
1-
p
,
M
ID

W
D

0.
73
2
7

0
.7
6
7
5

L
0
,
L
1
-f
,
L
2
-p
,
M
ID

W
D

0
.7
7
4
2

0
.8
0
4
5

L
1-
f,
L
2-
p
,
M
ID

W
D

0.
76
7
5

0
.7
9
7
1

L
0
,
L
2
-f
,
L
1-
p
,
L
2
-p

0
.7
8
0
5

0
.8
0
0
8

L
2-
f,
L
1-
p
,
L
2-
p

0.
77
1
1

0
.7
9
1
0

L
0
,
L
2
-f
,
L
1
-p
,
M
ID

W
D

0
.7
4
6
0

0
.7
8
0
4

L
2-
f,
L
1-
p
,
M
ID

W
D

0.
73
6
8

0
.7
7
0
9

L
0
,
L
2
-f
,
L
2
-p
,
M
ID

W
D

0
.7
7
7
5

0
.8
0
4
6

L
2-
f,
L
2-
p
,
M
ID

W
D

0.
76
8
6

0
.7
9
4
5

L
0
,
L
1
-p
,
L
2
-p
,
M
ID

W
D

0
.7
7
2
3

0
.8
0
3
2

L
1-
p
,
L
2-
p
,
M
ID

W
D

0.
76
2
3

0
.7
9
3
1

L
1
-f
,
L
2
-f
,
L
1
-p
,
L
2
-P

0
.7
7
2
9

0
.7
9
5
1

5

L
0,

L
1-
f,
L
2-
f,
L
1-
p
,
L
2-
p

0.
78
0
0

0
.8
0
2
6

L
1
-f
,
L
2
-f
,
L
1
-p
,
M
ID

W
D

0
.7
3
8
8

0
.7
7
4
7

L
0,

L
1-
f,
L
2-
f,
L
1-
p
,
M
ID

W
D

0.
74
5
7

0
.7
8
2
1

L
1
-f
,
L
2
-f
,
L
2
-p
,
M
ID

W
D

0
.7
7
0
7

0
.8
0
0
4

L
0,

L
1-
f,
L
2-
f,
L
2-
p
,
M
ID

W
D

0.
77
7
5

0
.8
0
7
8

L
1
-f
,
L
1
-p
,
L
2
-p
,
M
ID

W
D

0
.7
6
5
6

0
.7
9
8
6

L
0,

L
1-
f,
L
1-
p
,
L
2-
p
,
M
ID

W
D

0.
77
2
4

0
.8
0
6
0

L
2
-f
,
L
1
-p
,
L
2
-p
,
M
ID

W
D

0
.7
6
6
8

0
.7
9
8
2

L
0,

L
2-
f,
L
1-
p
,
L
2-
p
,
M
ID

W
D

0.
77
5
9

0
.8
0
7
6

6
L
0
,
L
1
-f
,
L
2
-f
,
L
1
-p
,
L
2
-p
,
M
ID

W
D

0
.7
7
5
7

0
.8
0
9
3

L
1-
f,
L
2-
f,
L
1-
p
,
L
2-
P
,
M
ID

W
D

0.
76
8
8

0
.8
0
1
9

A
ve
ra
g
e

0
.7
4
1
3

0
.7
6
2
8

■
T
h
e
sc
or
es

re
p
or
te
d
ar
e
th
e
av
er
ag
es

fr
om

10
0
ra
n
d
o
m
ly

se
le
ct
ed

su
b
se
ts

o
f
si
ze

3
0
fo
r
th
e
tr
a
in
in
g
se
t
a
n
d
si
ze

1
0
fo
r
th
e
te
st

se
t
in

th
e
2
P

g
a
m
es
,

an
d
si
ze

45
fo
r
th
e
tr
ai
n
in
g
se
t
an

d
si
ze

15
fo
r
th
e
te
st

se
t
in

th
e
3
P

g
a
m
es
.

31



Size Best Subset Test Score
1 L2-f 0.8027
2 L0, L2-f 0.8095
3 L0, L2-f, L2-p 0.8109
4 L0, L1-f, L2-f, L2-p 0.8109
5 L0, L1-f, L2-f, L1-p, L2-p 0.8100
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.8000

Table 13: Test Scores - Treatment 2P

Size Best Subset Test Score
1 L2-p 0.7747
2 L0, L2-p 0.7787
3 L0, L1-f, L2-p 0.7815
4 L0, L1-f, L2-f, L2-p 0.7790
5 L0, L1-f, L2-f, L2-p, MIDWD 0.7765
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.7728

Table 14: Test Scores - Treatment 3P

Size Best Subset Test Score
1 L1-f 0.7867

(L2-f)
2 L1-f, L1-p 0.7903

(L2-f, L2-p)
3 L0, L2-f, L2-p 0.7927
4 L0, L1-f, L2-f, L2-p 0.7938
5 L0, L1-f, L2-f, L1-p, L2-p 0.7927
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.7642

Table 15: Test Scores - 4-strategy games
in 2P

Size Best Subset Test Score
1 MIDWD 0.8156
2 L0, L2-f 0.8223
3 L0, L2-f, MIDWD 0.8252
4 L0, L1-f, L2-f, MIDWD 0.8237

(L0, L2-f, L2-p, MIDWD)
5 L0, L1-f, L2-f, L2-p, MIDWD 0.8230
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.8223

Table 16: Test Scores - 5-strategy games
in 2P

Size Best Subset Test Score
1 L2-p 0.7716
2 L1-f, L2-p 0.7877
3 L0, L1-f, L2-p 0.7932
4 L0, L1-f, L2-f, L2-p 0.7944
5 L0, L1-f, L2-f, L1-p, L2-p 0.7926
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.7901

Table 17: Test Scores - 4-strategy games
in 3P

Size Best Subset Test Score
1 L2-p 0.7778
2 L2-p, MIDWD 0.7728
3 L0, L1-f, L2-p 0.7698
4 L0, L1-f, L2-p, MIDWD 0.7642
5 L0, L1-f, L2-f, L2-p, MIDWD 0.7617
6 L0, L1-f, L2-f, L1-p, L2-p, MIDWD 0.7556

Table 18: Test Scores - 5-strategy games
in 3P
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Figure 11: Type Distributions - Treatments 2P and 3P

Figure 12: Test Scores with Varying Sizes of Training Set
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C Experimental Instructions - Treatment 2P

Environment

Consider a city with two citizens, R and B. The map of the city is presented below.

District K

District H

3

2

1
4

4

The city has hired a contractor to build a bridge that connects its two districts Kowloon
(K) and Hong Kong (H). A bridge is beneficial to both citizens because they both live in
District K while they both work at the same office in District H. The map above indicates the
location of R’s residence by [R’s Residence], the location of B’s residence by [B’s Residence],
and the location of their office by [Office Building].

The contractor has identified four feasible locations for the bridge labelled [Bridge 1],
[Bridge 2], [Bridge 3], and [Bridge 4]. The bigger the label number, the longer the bridge.
The contractor’s earnings depend on which bridge is built. In particular, the longer the
bridge, the more the contractor earns.

Each citizen wants a short distance between his residence and the office because then he
gets more points.

If the contractor builds:

• Bridge 1, then R will earn 200 points.

• Bridge 2, then R will earn 100 points.

• Bridge 3, then R will earn 150 points.

• Bridge 4, then R will earn 50 points.

If the contractor builds:

• Bridge 1, then B will earn 100 points.

• Bridge 2, then B will earn 200 points.

• Bridge 3, then B will earn 150 points.

• Bridge 4, then B will earn 50 points.

Importantly, the contractor cannot simply build any bridge he likes. In order for him to
build a bridge, he needs to get permission from at least one of the citizens R and B.
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The Permission Game

You will participate in 40 rounds of decision making. In each round, you will be randomly
paired with another person. One of you will be assigned to play the role of R and the other
will be assigned to play the role of B (you are equally likely to be assigned the role of R or
B, and the same for your partner). Your screen will tell you whether your role in the current
round is R or B.

In some rounds, there will be four possible bridges, and in other rounds, there will be five
possible bridges. Both the locations of possible bridges and the number of possible bridges
may differ in each round. The number of points you can earn from each bridge may change
in every round, both for you and the person you are paired with.

In each round, on your screen, you will see a “points table” (but not the map that
corresponds to the table) that reports the number of points from each bridge for both roles,
R and B. For example, the following table describes the points from the bridges located
according to the map presented on the previous page:

Bridge Built R B

4 (the longest) 50 50
3 (2nd longest) 150 150
2 (3rd longest) 100 200
1 (the shortest) 200 100

Another example of the points table for a FIVE bridge case is as follows:

Bridge Built R B

5 (the longest) 100 250
4 (2nd longest) 50 50
3 (3rd longest) 250 150
2 (4th longest) 150 200
1 (the shortest) 200 100

After seeing your role and the earning table in each round, you must decide which bridge
to give permission to by clicking one of the following buttons with the bridge’s number
presented on your screen.

[Bridge 1] [Bridge 2] [Bridge 3] [Bridge 4]

Once you have made your decision, click the “SUBMIT” button. Remember that the
contractor will build the bridge with the highest number (longest length) amongst those that
are chosen by you and the participant you are paired with. You will earn the points from
the bridge that is built.

There is a 2-minute time limit for each round of decision making. If you do not make
your choice within 2 minutes, the computer will randomly choose one of the bridges on your
behalf.

After you finish making your choice in each round, the round is over, and you will not be
informed about the outcome of that round until the experiment is over.
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At the end of the experiment, the computer will present a table with 40 rows. Each row
in the table corresponds to a round of the experiment. Each row in the table will list: (i)
your choice of bridge in that round, (ii) your partner’s choice of bridge in that round, (iii)
the bridge that was built by the contractor in that round, and (iv) the points you earned in
that round.

The computer will then randomly pick 1 round out of the 40 rounds to calculate your
cash payment. So, it is in your best interest to take each round equally seriously. Your total
payment in HKD will be the points you earned in that round translated into HKD via a 1:1
exchange rate plus a guaranteed HKD 40 show-up fee.

In order to get paid, you will have to fill in the receipt. The money you earn will be paid
electronically via the HKUST Autopayment System to the bank account you have provided
to the Student Information System (SIS). The auto-payment will be arranged by the Finance
Office of HKUST and will take about 3 weeks.

Before we start the experiment for real, we will have a short Comprehension Quiz. Then
you will participate in a practice round. The practice round is part of the instructions and
is not relevant to your payment. The goal of the practice round is to make you familiar with
the computer interface and the flow of the decisions in each round. Once the practice round
is over, the computer will tell you “The official rounds begin now!”
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Comprehension Quiz

1. Suppose that the points table is given as follows: Suppose that your role is R. When

Bridge Built R B

4 (the longest) 50 50
3 (2nd longest) 150 150
2 (3rd longest) 100 200
1 (the shortest) 200 100

you give permission for Bridge 3 and B gives permission for Bridge 2, how many points
do you earn?

(a) 50 (b) 100 (c) 150 (d) 200

2. Suppose that the points table is given as follows: Suppose that your role is R. When

Bridge Built R B

4 (the longest) 50 50
3 (2nd longest) 150 100
2 (3rd longest) 100 200
1 (the shortest) 200 150

you give permission for Bridge 1 and B gives permission for Bridge 3, how many points
do you earn?

(a) 50 (b) 100 (c) 150 (d) 200

3. Suppose that the points table is given as follows: Suppose that your role is B. When

Bridge Built R B

5 (the longest) 150 200
4 (2nd longest) 50 100
3 (3rd longest) 250 50
2 (4th longest) 100 250
1 (the shortest) 200 150

you give permission for Bridge 2 and R gives permission for Bridge 5, how many points
do you earn?

(a) 50 (b) 100 (c) 150 (d) 200 (e) 250
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