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Abstract

We study how to identify the exact levels of higher-order rationality of players in

games, the same question considered in Kneeland [13, Econometrica, 83, (2015), 2,065–

2,079]. We first present experimental evidence that the exclusion restriction (ER) as-

sumption in Kneeland [13], which is crucial for her identification, is violated in a num-

ber of games. We then provide an alternative identification approach that requires an

assumption that is not only applicable to any games but also weaker than the ER as-

sumption. Finally, we propose a simple chain game to implement our identification

approach and report experimental findings from the laboratory.
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1 Introduction

A player is 1st-order rational if she plays a best action in response to her belief regarding
payoffs and her opponent’s actions. Furthermore, inductively, for any positive integer k,
a player is (k + 1)-order rational if she believes that her opponents are k-order rational,
and she plays a best action in response to her belief. Common knowledge of rationality
means that players are rational, they know that their opponents are rational, and they
know that their opponents know that their opponents are rational ad infinitum, i.e., the
players are ∞-order rational.

Nearly all game-theoretical analyses are based on the assumption of common knowl-
edge of rationality (i.e., infinite orders of rationality). However, empirical and experimen-
tal results show that many players have finite orders of rationality (e.g., Burchardi and
Penczynski [4], Costa-Gomes, Crawford, and Iriberri [6], and Costa-Gomes and Weizsäcker
[7]). More importantly, players with different levels of rationality choose to play differ-
ent actions in many games (e.g., the e-mail game; see Rubinstein [15], Dekel, Fudenberg
and Morris [8]). Hence, to understand players’ strategic behaviors, it is of fundamental
importance to identify players’ orders of rationality.

One direct approach to identifying players’ orders of rationality is to elicit subjects’
first-order beliefs and associate them with the choice data (refer to, e.g., Costa-Gomes
and Weizsäcker [7] and Healy [12]), which reveals whether subjects are 1st-order ratio-
nal. However, extending this approach to identifying higher-order rationality would
necessarily involve eliciting complicated higher-order beliefs (e.g., beliefs about payoffs,
beliefs about their opponents’ beliefs about payoffs), which is clearly not tractable. To
circumvent this technical problem, a second approach (e.g., Burchardi and Penczynski
[4], Costa-Gomes, Crawford, and Iriberri [6]) imposes structural assumptions on players’
first-order beliefs (on payoff), which would pin down the behaviors of k-order rational
players for all k = 0, 1, 2, .... As a result, players’ higher-order rationality can be identified
by looking at their choice data. However, the success of this approach hinges critically on
ad hoc structural assumptions about players’ first-order beliefs.

Recently, Kneeland [13] proposes a new method to identify the exact orders of play-
ers’ rationality without imposing structural assumptions on players’ beliefs. Kneeland
proposes the ring game, which involves different positions (labeled 1, 2, 3,...) for players.
A k-order rational player has a unique rationalizable action at position k′ in the ring game
if and only if k′ ≤ k. Kneeland [13] aims to identify the orders of players’ rationality by
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changing payoffs and assigning players to different positions in the ring game.

Note that higher-order rationality involves an identification problem: a researcher who
observes a player choosing an action that survives k rounds of iterative deletion of strictly
dominated strategies cannot tell the exact order of higher-order rationality because such
a behavior may originate from a player who performs only k − 1 or fewer rounds of
iterative deletion of strictly dominated strategies. To eliminate the problem, Kneeland
[13] imposes an exclusion restriction assumption (hereafter, the ER assumption), meaning
that a k-order rational player does not respond to any payoff change that has no impact
on the k rounds of iterative deletion of strictly dominated strategies. Using only this ER
assumption, Kneeland identifies players’ higher-order rationality.

In this paper, we first study the validity of the ER assumption in Kneeland [13]. We
design experiments to test the ER assumption in games, including the ring game in Knee-
land [13]. Our experimental findings reveal that a significant proportion of subjects—
77.5% in Kneeland’s ring game, 67.5% in the rock-paper-scissor game, 45% in the match-
ing penny game, and 27.5% in the pure-coordination game—violate the ER assumption.

Following Brandenburger, Danieli and Friedenberg [3], we then consider the “revealed-
rationality” approach to identifying higher-order rationality. How a k-order rational agent
chooses a final action in a game involves two decision-making steps – the deletion step and
the selection step. The standard k-order rationality theory fully describes the deletion step,
i.e., a k-order rational agent performs k rounds of iterative deletion of strictly dominated
strategies. When more than one action survive k rounds of iterative deletion, the agent
should enter the selection step to finalize her choice of action, but the existing theory is
completely silent regarding this selection step. Our revealed-rationality approach argues
that one could use a player’s final action to infer the order “k” in the deletion step, only
if the selection step is subsumed by the deletion step. This approach does not suffer any
loss of generality because a model is suitable if its prediction matches the behaviors of the
agents, which echoes the classical “as-if” view of Friedman [10].

We can interpret the revealed-rationality approach in an alternative way. If we ob-
serve a player selecting an action that does not survive k rounds of iterative deletion
of strictly dominated strategies, then we immediately conclude that the player is not k-
order rational, i.e., he is at most (k− 1)-order rational. Thus, by observing a player’s
behavior in games, we identify an upper bound on the player’s level of higher-order ra-
tionality. The identification problem discussed above is that a non-trivial lower bound
cannot be identified from the observed behaviors. To identify a player’ exact level of
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higher-order rationality, the revealed-rationality approach simply assumes that the up-
per bound is equal to the exact level, which we call the “upper-bound” assumption. Al-
though this assumption seems strong, we show in Section 5.1 that the ER assumption
implies the upper-bound assumption in the ring game. Nevertheless, the upper-bound
assumption does not imply the ER assumption in general. When the ER assumption is
not satisfied, Kneeland [13] is completely silent regarding the level of rationality, while
the upper-bound assumption (i.e., the revealed-rationality approach) still provides some
useful information. In this regard, the upper-bound assumption is weaker than the ER
assumption and the revealed-rationality approach can be interpreted as a generalization
of Kneeland’s approach in cases where the ER assumption is not satisfied.

Finally, we follow Kneeland’s approach to designing games to identify higher-order
rationality. Specifically, we propose the chain game in which players’ actions have multiple
dimensions, with each dimension being labeled 1st, 2nd, 3rd, and so on. We design the
payoffs of the game such that the rationalizable actions of a k-order rational player have
a unique rationalizable element in the k′-th dimension if and only if k′ ≤ k. By manipu-
lating the game payoffs, subjects’ behaviors in the games reveal their orders of (revealed-
)rationality. Our experimental results show that 96% of participants are 1-order rational,
63% are 2-order rational, 21% are 3-order rational, and 10% are 4-order rational, which
is (approximately) first-order stochastically dominated by the distribution obtained by
Kneeland [13], possibly due to learning effects in the ring game.

Our identification approach has three advantages over Kneeland’s approach. First,
the upper-bound assumption imposed in our approach is weaker than the ER assumption
required by Kneeland [13]. Second, our chain game is more efficient than the ring game
in terms of the number of players required to identify higher-order rationality. Third, our
game does not suffer from potential learning issues (see the detailed discussion in Section
6).

The remainder of the paper is organized as follows. We first review the identifi-
cation problem in Section 2, and discuss the identification approach in Kneeland [13] in
Section 3. In Section 4, we study the validity of the ER assumption. We then discuss the
revealed-rationality approach in Section 5. Finally, we propose the chain game to achieve
identification in Section 6. Section 7 concludes. Our experimental design and results are
presented in the Appendix.
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2 The Identification Problem

Following Bernheim [2] and Pearce [14], we define k-order rationality as follows. A game
is a tuple G =

〈
I, A ≡ ×i∈I Ai, (gi : A→ R)i∈I

〉
, where I is a finite set of players; Ai is a

finte set of actions for player i; and gi is the payoff fuction for player i. Define R0
i (G) ≡ Ai.

For any positive integer k, define Rk
i (G) inductively as follows.

Rk
i (G) :=

ai ∈ Rk−1
i (G) :

∃ρ ∈ ∆
(
×j 6=iRk−1

j (G)
)

such that

∑a−i∈×j 6=iR
k−1
j (G)

ui (ai, a−i)× ρ (a−i)

≥ ∑a−i∈×j 6=iR
k−1
j (G)

ui
(
a′i, a−i

)
× ρ (a−i) , ∀a′i ∈ Ai

 .

That is, Rk
i (G) is the set of actions that survives k rounds of iterative deletion of strictly

dominated strategies.1 Define R∞
i (G) ≡ ∩∞

k=0Rk
i (G). Note that Rk

i (G) is monotonically
decreasing in k, i.e.,

R0
i (G) ⊃ R1

i (G) ⊃ R2
i (G) ⊃ ... ⊃ R∞

i (G) .

“k-order rationality” is defined as follows.

A player is k-order rational in game G (F)

if and only if she would always play actions in Rk
i (G) .

Suppose that we observe the behavior of a player in a game G. Based on this ob-
servation, can we draw a conclusion such as “the player is k-order rational” for some
k? The answer is no. To see this, consider the case in which we observe player i play-
ing a ∈ Rk+1

i (G) ⊂ Rk
i (G). Such an observation cannot help us identify the exact order

of rationality for this player: she may be (k + 1)-order rational because a ∈ Rk+1
i (G);

alternatively, she may be k-order but not (k + 1)-order rational, although she chooses
a ∈ Rk+1

i (G) ⊂ Rk
i (G). This is the identification problem.

1More precisely, Rk
i (G) is the set of actions that survives k rounds of iterative deletion of never-best

replies, and a standard min-max argument shows that a strategy is strictly dominated if and only if it is

never best.
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For instance, consider the following bimatrix game G1 studied in Kneeland [13].

G1

player 1

player 2’s choice

pl
ay

er
1’

s
ch

oi
ce c d

a 15 0

b 5 10

player 2

player 1’s choice

pl
ay

er
2’

s
ch

oi
ce a b

c 10 5

d 5 0

Suppose that we observe player 1 playing a ∈ R2
1
(
G1) ⊂ R1

1
(
G1) = {a, b}. Although

it is plausible that this player is 2-order rational, we can never be certain because such a
behavior may originate from a 1-order but not a 2-order rational player.

3 Kneeland’s Identification

Following Kneeland [13, Footnote 13 on Page 2,069], a player’s 0-order payoff is her
own payoff; a player’s 1-order payoff is her opponent’s payoff; a player’s 2-order pay-
off is her opponent’s opponent’s payoff, and so on. For k = 0, 1, 2, ..., let hi

k (G) denote
the k-order payoff of player i in G. Clearly, R1

i (G) is completely determined by hi
0 (G);

R2
i (G) is completely determined by

[
hi

0, hi
1 (G)

]
; and Rk

i (G) is completely determined by[
hi

0 (G) , ..., hi
k−1 (G)

]
. Based on this observation, Kneeland [13] proposes the following

assumption.

Assumption 1 (Kneeland’s ER assumption) For any k = 1, 2, ..., a k-order rational player
plays the same action in any two games G and G′ if

[
hi

0 (G) , ..., hi
k−1 (G)

]
=
[
hi

0 (G
′) , ..., hi

k−1 (G
′)
]
.

The ER assumption is then used by Kneeland [13] to identify a player’s order of
rationality. Specifically, suppose that we can further observe player 1’s action in G2 below
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in addition to her action in G1 above.

G2

player 1

player 2’s choice

pl
ay

er
1’

s
ch

oi
ce c d

a 15 0

b 5 10

player 2

player 1’s choice

pl
ay

er
2’

s
ch

oi
ce a b

c 5 0

d 10 5

There are four possible action profiles for player 1 (in G1 and G2): (a, a), (a, b), (b, a),
(b, b). Note that

R2
1

(
G1
)

= {a} , R1
1

(
G1
)
= {a, b} ;

R2
1

(
G2
)

= {b} , R1
1

(
G2
)
= {a, b} .

Clearly, all four action profiles are 1-order rational because R1
1
(
G1) = R1

1
(
G2) = {a, b},

and (a, b) is the sole action profile that is 2-order rational because R2
1
(
G1) × R2

1
(
G2) =

{(a, b)}. However, the identification problem discussed above applies: player 1 playing
(a, b) does not imply she is 2-order rational because such an action profile may originate
from a 1-order but not 2-order rational player. The objective of the ER assumption in
Kneeland [13] is to eliminate this possibility. Note that the sole difference between G1

and G2 is player 2’s payoff, which is the 1-order payoff for player 1. The ER assumption
requires a k-order rational player to not respond to k-order (or any higher order) payoff
changes. Consequently, (a, b) must originate from a 2-order rational player2; this resolves
the identification problem described above.

4 A Close Examination of the ER Assumption

What does the ER assumption mean? Is it a strong assumption? To answer these ques-
tions, we take a close look at decision making of a k-order rational player.

Facing game G, a k-order rational player must choose one action. How would she
choose it? Let ΦG

i denote the selection process used by the player to choose the final

2According to the ER assumption, if the player is 1-order but not 2-order rational, her action is indepen-

dent of her 1-order payoff, and hence, she must play the same action in both G1 and G2.
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action, which is illustrated as follows.

G
ΦG

i
� ai.

The theory of rationality (refer to, e.g., Bernheim [2] and Pearce [14]) says that this
k-order rational player would perform k rounds of iterative deletion of strictly dominated
strategies. Specifically, given her own payoff hi

0 (G), player i performs 1 round of dele-
tion and gets R1

i (G), which is the set of player i’s actions that are best responses to her
opponents playing actions in A−i, i.e., hi

0 (G) fully determines R1
i (G). Similarly, hi

1 (G)

(i.e., i’ opponents’ payoffs) fully determines R1
−i (G) (i.e., the set of i’ opponents first-

order rational actions). Then, given hi
0 (G) and i’ opponents playing actions in R1

−i (G),
player i performs a 2nd round of deletion and gets R2

i (G). That is,
[
hi

0, hi
1 (G)

]
fully de-

termines R2
i (G). Furthermore, similar arguments show that

[
hi

0, hi
1 (G) , ...hi

k−1 (G)
]

fully
determines Rk

i (G). Let us call this procedure the “deletion step” of player i choosing one
action facing G. Let ΦGd

i : G → 2Ai denote the deletion operation performed by player i
in the deletion step, i.e., ΦGd

i (G) ≡ Rk
i (G) for a k-order rational player i.

However, Rk
i (G) usually contains multiple actions, which means that the deletion

step does not pin down a unique action for player i. Hence, player i needs a second
step, the “selection step,” to finalize her choice of action among elements in Rk

i (G). Let
ΦGs

i denote the process used by player i in the selection step. Thus, the ΦG
i for a k-order

rational player can be decomposed into two steps, as shown below.

ΦG
i : G

Φ
Gd
i
� Rk

i (G)
ΦGs

i
� ai.

From the analysis above, the following proposition is straightforward.

Proposition 1[
hi

0 (G) , ..., hi
k−1 (G)

]
=
[

hi
0
(
G′
)

, ..., hi
k−1
(
G′
)]

=⇒ Rk
i (G) = Rk

i
(
G′
)

=⇒ ΦGd
i = Φ

G′d
i .

An equivalent way to describe the ER assumption is:[
hi

0 (G) , ..., hi
k−1 (G)

]
=
[

hi
0
(
G′
)

, ..., hi
k−1
(
G′
)]

=⇒ ΦG
i = ΦG′

i .

Clearly, there is a gap between Proposition 1 and the ER assumption. For the two games
G and G′ with

[
hi

0 (G) , ..., hi
k−1 (G)

]
=
[
hi

0 (G
′) , ..., hi

k−1 (G
′)
]
, Proposition 1 says that k
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rounds of iterative deletions would deliver the same Rk
i (G) = Rk

i (G
′) for player i, while

the ER assumption requires this agent to select the same action in G and G′.

Now, consider the following thought experiment. Fix any game G and let a player
play G twice, i.e., we consider G′ = G. Then, by definition, hi

k (G) = hi
k (G

′) for any
k, and the ER assumption requires every player to choose the same action on both occa-
sions. Based on this thought experiment, we design laboratory experiments to test the ER
assumption. First, we let subjects play each of the following three games – ”Meet in New
York,” ”Matching Penny,” and ”Rock-Paper-Scissors” – two times.3

Meet in New York

a b

A 1, 1 0, 0

B 0, 0 1, 1

Matching Penny

c d

C 1,−1 −1, 1

D −1, 1 1,−1

Rock-Paper-Scissors

rock paper scissor

rock 0, 0 −5, 5 5,−5

paper 5,−5 0, 0 −5, 5

scissor −5, 5 5,−5 0, 0

We find that 67.5% of the subjects in rock-paper-scissors, 45% of the subjects in matching
penny, and 27.5% of the subjects in meet in New York choose different actions.

Furthermore, we strictly follow the instructions in Kneeland [13], and let the subjects
play the ring game (which is used in Kneeland’s identification) two times. If the ER
assumption is satisfied, the subjects, regardless of their levels of rationality, should play
the same action on both occasions as long as they are in the same position. However,
we find that 77.5% of the subjects chose different actions in at least one position; 45% of
the subjects chose different actions in at least two positions; 20% of the subjects chose
different actions in at least three positions.4 We describe the aforementioned experiments
in detail in Appendix B.

In sum, the ER assumption is not satisfied in the meet in New York, matching penny,

3To exclude the possibility that subjects think of the two games as a rounds of a single game, we 1) did

not inform them that they would play the game two times at the beginning of the experiment and 2) did

not provide any feedback after the first game.
4This result is consistent with Ye [19], who presents an experimental design to identify whether a sub-

ject’s exhibited sophistication level is due to his belief in the opponents’ rationality or his ability to finish

all the required reasoning steps. Ye [19] reports that 63.1% and 15.1% of subjects remain unidentified when

0 and 1 deviation, respectively, determines the level classification in the ring game. For more details, see

Table 4 of Ye [19].
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or rock-paper-scissors games. More importantly, the assumption is not satisfied in the
ring game, which casts doubt on Kneeland’s identification.

4.1 An Alternative Interpretation of the ER Assumption

As shown above, one implication of the ER assumption is that, for a fixed game, a player
will always choose a fixed rationalizable action whenever she plays the game. Consider
the meet in New York game, which has two pure-strategy Nash equilibria, (A, a) and
(B, a).

Meet in New York

a b

A 1, 1 0, 0

B 0, 0 1, 1

Based on the payoffs of the game alone, there is no way for us to tell which equilibrium
will be selected by the players. Likewise, there is no way for us to tell which rationalizable
actions will be selected by the players. Schelling [16] argues that a “focal point” may
determine players’ choices. For example, suppose that A = a = “Grand Central Station”
and that B = b = “Empire State Building.” Then, the players will select (A, a) if they are
New Yorkers, and they will play (B, b) if they are tourists. However, if player 1 is a New
Yorker and player 2 is a tourist, then players’ choices remain ambiguous.5

Nevertheless, all of the above suggest that the payoffs of a game alone do not de-
termine a rational player’s final action; rather, the context of the game (e.g., whether they
are tourists) also plays a role. This leads us to provide an alternative interpretation of
the ER assumption: it is equivalent to a deterministic selection rule in the selection step.
Clearly, our experimental result reveals that most people do not follow a deterministic se-
lection rule when there is no clear focality in one of the available actions. Rather, people
select their actions stochastically, i.e., they sometimes select “Empire State Building” and
sometimes select “Grand Central Station” in the meet in New York game.

What do we mean by the “stochastic selection”? Does a “stochastic process” really
exist in the real world? To arrive at an answer, consider a coin toss. Clearly, the outcome

5The two players may argue that since player 1 is a New Yorker, they coordinate to play (A, a); however,

they may also argue that since player 2 is a tourist, they coordinate to play (B, b).
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of a coin toss depends on many factors, for example, the design of the coin, the velocity of
air flowing around the coin, the strength of the player who tosses the coin, and how high
the coin is tossed. If we know the exact factors that decide the outcome of the coin toss,
then the outcome must be deterministic by definition. That is, there exists a deterministic
function, Λ : E1 × E2 × E3 × ... → {head, tail}, where E1, E2, E3... are the sets of factors
that determine the outcome, e.g., E1 is the set of coin designs and E2 is the set of velocities
of air flowing around the coin. Unfortunately, as outsiders, we observe only the realized
value in E1 but not those in E2, E3, and so on. Since the realized value in E1 cannot fully
determine the outcome, our prediction is stochastic rather than deterministic, i.e., our
prediction is λ : E1 → 4 [{heads, tails}]. For example, if the coin has an identical design
on both sides, we call it a fair coin, i.e., λ (identical design) =

[
1
2heads + 1

2 tails
]
. In sum,

when we do not fully know the factors determining the outcome, we use a stochastic
process to describe the outcome.6

Similarly, the final action chosen by a k-order rational player in G depends on many
factors, e.g.,

[
hi

0 (G) , ..., hi
k−1 (G)

]
(or equivalently, Rk

i (G)). However,
[
hi

0 (G) , ..., hi
k−1 (G)

]
alone is insufficient to pin down the final action because Rk

i (G) may contain multiple ac-
tions. Thus, players use other factors to pin down the final action, e.g., his habits, his
conjectures about his opponent’s habits, his mood, and his conjectures about his oppo-
nent’s mood. That is, in principle, the selection of the final action can be described as a
deterministic function, Φi : F1 × F2 × F3 × ...→ Ai, where

F1 =
{[

hi
0 (G) , ..., hi

k−1 (G)
]

: all possible game G
}

.

As a outsider, we observe
[
hi

0 (G) , ..., hi
k−1 (G)

]
∈ F1 but do not understand and are not

fully aware of all other factors that pin down the final action of the k-order rational player.
Therefore, based on the observation on F1, we use a function φi

k : F1 → 4 (Ai) to describe
the outcome. Given this view, it is straightforward to see that the ER assumption (i.e.,
Assumption 1) is equivalent to the following assumption.

Assumption 2 (deterministic selection) For any k-order rational player i,

φi
k

[
hi

0 (G) , ..., hi
k−1 (G)

]
∈ {α ∈ 4 (Ai) : α (ai) ∈ {0, 1} , ∀ai ∈ Ai} , ∀G.

That is, player i uses a Dirac distribution to select an action, given
[
hi

0 (G) , ..., hi
k−1 (G)

]
.

6There are two views of how the stochastic process is determined: the frequentist view and the Bayesian

view.
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Assumption 2 says that players always use a degenerate (or equivalently, determin-
istic) rule to select the final action from the set Rk

i (G). Clearly, Assumption 2 is critical for
Kneeland’s identification: if it is not satisfied, a 1-order rational player 1 in the example
G1 and G2 above would play all (a, a), (a, b), (b, a), and (b, b) with positive probability,
and as a result, (a, b) originates from both 1-order rational players and 2-order rational
players—that is, the identification problem remains. Our experiments with Kneeland’s
ring game, meet in New York, matching penny, and rock-paper-scissors, show that As-
sumption 2 is not satisfied.7

Note that the stochastic selection rule we refer to is different from the randomization
induced by payoff indifference due to some non-degenerate belief as discussed in foot-
note 20 of Kneeland [13]. Even if we exclude such beliefs and eliminate the possibility
of payoff indifference, our notion of randomization in action may still exist, which is due
to the multiplicity of actions in Rk

i (G) and the fact that we are not fully aware of all the
factors that pin down the final action.

5 The Revealed-Rationality Approach

Although higher-order rationality entails the identification problem described above, a
player’s action in a game indeed provides some information about her level of rational-
ity: playing a /∈ Rk

i (G) implies that the player is not k-order rational in G. Thus, we
follow Brandenburger, Danieli and Friedenberg [3] and consider an alternative identifica-
tion strategy:

A player is not k-order revealed-rational in game G

if and only if she actually plays an action a /∈ Rk
i (G) .

Equivalently,

A player is k-order revealed-rational in game G

if and only if she actually plays actions in Rk
i (G) . (FF)

7The rock-paper-scissors game has been studied in Cason, Friedman, and Hopkins [5], which also casts

doubt on the deterministic-selection assumption. Furthermore, Walker and Wooders [17] conduct an em-

pirical study of Wimbledon games and show that players use mixed strategies instead of pure strategies to

select rationalizable actions.
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Clearly, we can extend the identification to observed behaviors in multiple games.

A player is k-order revealed-rational in a set of games G (FFF)

if and only if she actually plays actions in Rk
i (G) for every G ∈ G.

Comparing (F) and (FF), we find that “k-order rationality” and “k-order revealed-
rationality” are similar, with the former focusing on all possible behaviors for players in
games and the latter focusing on all actual behaviors for players in games.8

As discussed above, a player’s final action in a game is determined by her decision
making in both the deletion step and the selection step. The k-order rationality theory fully
describes the decision process in the deletion step, whereas the theory is completely silent
regarding the selection step. That is, we attempt to use a player’s final action to infer the
order “k” in the deletion step only; this is the source of the identification problem.

Assuming a particular deterministic selection rule in the selection step (i.e., the ER
assumption), Kneeland [13] manages to identify the exact k rounds of deletion in the dele-
tion step. In contrast, we subsume the selection step into the deletion step; equivalently,
we regard the selection step as a possible additional deletion step, and our identified or-
der of revealed rationality summarizes decision making in both the deletion and selection
steps.

Does our approach suffer any loss of generality? To us, the answer is no because
the ultimate goal of any theory (including k-order rationality theory) is to predict or de-
scribe players’ behaviors in games, and our revealed rationality approach achieves this
goal better than Kneeland’s approach. For illustration, consider a 1-order but not 2-order
rational player who, in any game G, always performs 1 round of deletion of strictly dom-
inated strategies in the deletion step. However, in the selection step, suppose that this
player follows some rule and always chooses an action a ∈ R∞

i (G) ⊂ R1
i (G). In this

case, our identification approach would label this player an ∞-order revealed-rational
player, although the true order of rationality is 1 (i.e., he performs 1 round of deletion
in the deletion step). Nevertheless, this order “1” in the deletion step (i.e., R1

i (G)) is not
sufficient to determine the player’s final action in a game, and the final action is always

8However, our approach does not resolve the identification problem. For illustration, consider (a, b)

selected by player 1 in G1 and G2 above. Our identification approach simply labels player 1 a 2-order

rational player because her behaviors are consistent with R2
1
(
G1) and R2

1
(
G2), although (a, b) may also

originate from a 1-order but not 2-order rational player.
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in R∞
i (G). Hence, R∞

i (G) or “being ∞-order revealed-rational” is a much better descrip-
tion of the behavior of this player than R1

i (G) or “being 1-order rational.” Thus, there is
no loss of generality in regarding this player as if she were an ∞-order rational player.
This echoes the classical “as-if” view in Friedman [10]: we may never identify the exact
decision-making process of agents; however, a model is suitable if the prediction of the
model matches the behaviors of the agents.9

An alternative interpretation of the revealed-rationality approach is that we provide
a conservative estimation of a player’s level of rationality: we say that a player is k-order
rational if and only if her behaviors in game G do not contradict Rk

i (G). The behaviors
identify only an upper bound on the players exact level of rationality. Hence, the revealed-
rationality approach implicitly assumes that the upper bound is equal to the exact level
of player’s higher-order rationality, which we call the upper-bound assumption. In the fol-
lowing subsection, we discuss the relationship between the ER assumption in Kneeland
[13] and our upper-bound assumption.

5.1 The ER Assumption vs. the Upper-bound Assumption

Consider the ring games in Kneeland [13], and suppose the ER assumption is satisfied.
In the following table, we reproduce Table I of Kneeland [13] which summarizes the pre-
dicted actions under different levels of rationality and the ER assumption.

Table I of Kneeland [13]: Predicted actions under rationality and assumptions ER in the 8 games

Games

Position 1 2 3 4

Type A B A B A B A B

1-order (a, a)(b, b)(c, c) (a, a)(b, b)(c, c) (a, a)(b, b)(c, c) (a, c)

2-order (a, a)(b, b)(c, c) (a, a)(b, b)(c, c) (a, b) (a, c)

3-order (a, a)(b, b)(c, c) (b, a) (a, b) (a, c)

4-order (a, c) (b, a) (a, b) (a, c)

Precisely, there are 2 ring games, labeled as A and B, and 4 positions, labeled as

9This “as-if” view is also discussed in Brandenburger, Danieli and Friedenberg [3].
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1, 2, 3, 4, in each ring game. The two games, A and B, are almost the same except for
player’s payoffs in position 1. Because of the payoff difference, a k-order rational player
has different uniquely rationalizable actions at position k′ (≤ k) in A and B; while all
actions are rationalizable for this player at position k′ (> k) in both games. Given the ER
assumption, Table I of Kneeland [13] lists the set of rationalizable actions in both games
for players with different levels of rationality. As a result, a player is k-order rational if
she plays different actions in A and B at position k.

However, the upper-bound assumption is also satisfied in these two games, if the
ER assumption is satisfied. If a player plays the same action at position k+ 1 and different
actions at position k, then k is the upper bound for the levels of rationality of this player.
Indeed, this player is k-order rational, as implied by the ER assumption. Therefore, the
upper-bound assumption is weaker than the ER assumption.

Hence, when the ER assumption is satisfied, Kneeland’s approach and the revealed-
rationality approach deliver the same identification. In general, however, the upper-
bound assumption does not imply the ER assumption. In particular, when the ER as-
sumption is not satisfied, Kneeland’s approach is completely silent about players’ higher-
order rationality, while the revealed-rationality still provides a meaningful estimation.
Therefore, one way to interpret the revealed-rationality approach is that it generalizes
Kneeland’s approach to setups in which the ER assumption may not be satisfied.

6 The Chain Game

Kneeland [13] argues that bimatrix games cannot be used to identify players’ higher-order
rationality. Consequently, the ring game is introduced to achieve identification.

Instead of identifying players’ higher-order rationality, we identify players’ revealed
higher-order rationality. Furthermore, we show that bimatrix games are sufficient to
achieve the identification. To illustrate the idea, we propose a novel bimatrix game, which
we call the chain game, described as in game G3 below.

R0
1

(
G3
)
=
{

a1, a′1
}
×
{

a2, a′2
}
×
{

a3, a′3
}

R0
2

(
G3
)
=
{

b1, b′1
}
×
{

b2, b′2
}
×
{

b3, b′3
}
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G3

player 1’s payoff: a1 1

a′1 0

+

b1 b′1
a2 2 0

a′2 0 2

+

b2 b′2
a3 1 0

a′3 0 1

player 2’s payoff: b1 0

b′1 2

+

a1 a′1
b2 1 0

b′2 0 1

+

a2 a′2
b3 2 0

b′3 0 2

Both players choose three-dimensional actions, and a player’s payoff is the sum of three
parts: the first part is determined by her choice in the 1st dimension of her action alone;
the second part by her choice in the 2nd dimension and her opponent’s choice in the 1st
dimension; the third part by her choice in the 3rd dimension and her opponent’s choice
in the 2nd dimension.

We design the payoff so that a 1-order rational player has a unique rationalizable
choice in the 1st dimension of her action; a 2-order rational player has a unique rational-
izable choice in the 2nd dimension; a 3-order rational player has a unique rationalizable
choice in the 3rd dimension. Precisely,

R1
1

(
G3
)

= {a1} ×
{

a2, a′2
}
×
{

a3, a′3
}

;

R2
1

(
G3
)

= {a1} ×
{

a′2
}
×
{

a3, a′3
}

;

R3
1

(
G3
)

= {a1} ×
{

a′2
}
× {a3} ;

We can identify the revealed higher-order rationality as follows:

player 1 is 1-order revealed-rational if and only if she plays a1;

player 1 is 2-order revealed-rational if and only if she plays
(
a1, a′2

)
;

player 1 is 3-order revealed-rational if and only if she plays
(
a1, a′2, a3

)
.

One way to interpret the chain game is that we merge two n-player ring games into
a 2-player chain game. For example, G3 corresponds to the two ring games, G4 and G5,
in Figure 1. For every n ∈ {1, 2, 3}, if we assign a player to the position of “player n” in
ring games G4 and G5, her behaviors in the games would reveal whether she is n-order
rational. The chain game G3 can be considered to be a combination of G4 and G5, or more
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precisely, assigning player 1 in G3 to the positions of “player 1” and “player 3” in G4 and
“player 2” in G5 simultaneously; and assigning player 2 in G3 to the positions of “player
2” in G4 and “player 1” and “player 3” in G5 simultaneously. Furthermore, the payoffs of
the players in G3 become the sum of the payoffs of their positions in G4 and G5.

G4

Player 3

player 2’s choice

pl
ay

er
3’

s
ch

oi
ce a b

a 1 0

b 0 1

Player 2

player 1’s choice

pl
ay

er
2’

s
ch

oi
ce a b

a 1 0

b 0 1

Player 1

player 3’s choice
pl

ay
er

1’
s

ch
oi

ce a b

a 1 1

b 0 0

G5

Player 3

player 2’s choice

pl
ay

er
3’

s
ch

oi
ce a b

a 2 0

b 0 2

Player 2

player 1’s choice

pl
ay

er
2’

s
ch

oi
ce a b

a 2 0

b 0 2

Player 1

player 3’s choice

pl
ay

er
1’

s
ch

oi
ce a b

a 0 0

b 2 2

The ring games in Kneeland [13]

=⇒

G3

player 2’s choice

pl
ay

er
1’

s
ch

oi
ce b2 b′2

a3 1 0

a′3 0 1

+

Player 1

player 2’s choice

pl
ay

er
1’

s
ch

oi
ce b1 b′1

a2 2 0

a′2 0 2

+

player 1’s choice

pl
ay

er
1’

s
ch

oi
ce b3 b′3

a1 1 1

a′1 0 0

player 1’s choice

pl
ay

er
2’

s
ch

oi
ce a2 a′2

b3 2 0

b′3 0 2

+

Player 2

player 1’s choice

pl
ay

er
2’

s
ch

oi
ce a1 a′1

b2 1 0

b′2 0 1

+

player 2’s choice

pl
ay

er
2’

s
ch

oi
ce a3 a′3

b1 0 0

b′1 2 2

The chain game

Figure 1: Transformation of 3-person ring games to a 2-person chain game

Similarly, we transform the ring games used in Kneeland’s [13] experiments to the
chain games and conduct experiments to identify players’ revealed higher-order ratio-
nality. Our experimental results show that 96% of the participants are 1-order rational,
63% are 2-order rational, 21% are 3-order rational, and 10% are 4-order rational (refer to
Appendix A).

Compared with the ring game, the chain game has two advantages. First, the ex-
periments using the chain game require fewer participants, and hence the chain game
is more efficient. Second, the chain game identifies all levels of (revealed) higher-order
rationality simultaneously, whereas in ring games, we need to rotate the players’ positions
multiple times, and the players must play multiple rounds of the same game (albeit in
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Table 1: Identification results

1-order 2-order 3-order 4-order

Identification in Kneeland [13] 93% 71% 44% 22%

Our experimental result 96% 63% 21% 10%

different positions).10 Consequently, participants in ring games may learn how to play
the game as the experiments continue11; this learning effect may thus distort the identifica-
tion outcome.12 Compared with Kneeland’s data, our experimental outcome appears to
suggest that the learning effect in Kneeland [13] is significant.13

10Note that the notion of “k-order” rationality considered in Kneeland [13] is defined in static (rather

than dynamic) games. For notions of rationality in dynamic games, refer to, e.g., Battigalli [1] and Pearce

[14]. The chain game identifies the purely static higher-order rationality, whereas Kneeland’s identification

involves a dynamic flavor.
11Weber [18] shows that subjects in the lab can learn from introspection when they play a game repeat-

edly, even if no feedback is provided.
12For example, suppose that a 1-order but not 2-order rational player is first assigned to the position

of “player 1” in G4, and she deletes action b after performing 1 round of deletion of strictly dominated

strategies. Furthermore, suppose this player is later assigned to the position of “player 2” in G4. Then, her

prior experience and one (additional) round of deletion of strictly dominated strategy would lead her to play

only a; such a behavior would mislead us to believe she is a 2-order rational player.
13For a k-order but not (k + 1)-order rational subject, we use k to label this subject. Then, the identified

distribution of the random variable k in Kneeland [13] has the PDF: Pr [k = 0] = 7%, Pr [k = 1] = 22%,

Pr [k = 2] = 27%, Pr [k = 3] = 22%, and Pr [k ≥ 4] = 22%. We can calculate our distribution similarly. The

CDFs of the two distributions are listed below.

Pr [k ≤ 0] Pr [k ≤ 1] Pr [k ≤ 2] Pr [k ≤ 3]

Identification in Kneeland [13] 7% 29% 56% 78%

Our experimental result 4% 37% 79% 90%

That is, Kneeland’s distribution has (approximate) first-order stochastic dominance over ours, which may

be caused by the learning effect.
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7 Concluding Remarks

Kneeland [13] argues that one major merit of its identification approach is that it requires
a considerably weaker assumption (i.e., the ER assumption) than those imposed in previ-
ous papers. In this paper, we impose an even weaker assumption and furthermore, our
identification approach can be implemented using the chain game, which is simpler and
more efficient than Kneeland’s [13] ring game.

Finally, we discuss two potential critiques, which are shared by this paper and Knee-
land [13]. First, to make our identification useful, both of the two papers implicitly as-
sume that players’ levels of rationality do not vary across games. If they do, the identified
level in some game does not provide the information on other games. However, Geor-
ganas, Healy and Weber [11] show that distribution of level-k types in the population
might be constant across games, though individual players’ levels may vary across game.
Thus, alternatively, the identification in Kneeland [13] and this paper can be viewed as
identifying a distribution of level-k types in the population.

To see the 2nd potential critique, consider the following scenario.

R1
1
(
G′
)

= R1
1
(
G′′
)
= {a, b} ;

R2
1
(
G′
)

= R2
1
(
G′′
)
= {a} .

Suppose a 1-order but not 2-order rational player 1 who always selects a to play in G′ but
plays both a and b in G′′. If we conduct experiments only on G′, we would incorrectly
conclude that the player is (revealed) 2-order rational.

The critique is equivalent to stating that the sampling of only G′ is not sufficient to
identify the players’ true order of rationality.14 However, one implicit assumption that is
imposed by the revealed preference theory, by Kneeland [13] and by us is as follows:

14This critique also applies to the revealed preference theory. To see this, we use C (B,�) to denote the

set of alternatives that an agent with preference � actually chooses in budget set B. Suppose α, β ∈ B,

α 6= β and α ∼ β � γ for every γ ∈ B\ {α, β}. To obtain the full set of C (B,�), we need to observe

multiple occasions of “the agent choosing an alternative in B” because the agent selects only one optimal

alternative in B for each occasion. Consider a sequence of occasions such that the agent chooses α in the

first k occasions but changes to β in all other occasions. In reality, if we have only finite, say n, observations

with n ≤ k, we would incorrectly conclude that α is (revealed) strictly preferred to β. That is, the sampling

of n (≤ k) observations is not sufficient to identify the true preference.
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we have a good sampling of observations, so that the observed behaviors of
the agents are good enough representation of their behaviors in unobserved
occasions.

Given this assumption, both Kneeland [13] and we provide a method for identifying
the players’ higher-order rationality.

Such a critique may also apply to the statistical sampling. However, statistical re-
sults (e.g., the central limit theorem) address the critique by providing a way to judge
whether a statistical sampling is good. In contrast, we do not have a theory to help us
judge whether an experimental sampling is good. Nevertheless, finding such a theory is
clearly beyond the scope of this paper.
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Appendix A – Experimental Design and Findings

In this section, we report our experimental design and findings for two sets of treatments.
The first treatment was designed and conducted to identify the revealed higher-order ra-
tionality using the chain game. The second treatment was designed and conducted to test
whether or not individuals use the deterministic choice rule in various games including
the rock-paper-scissor game, the matching penny game, the pure-coordination game, and
the ring game of Kneeland [13].

The experiments were conducted in English using z-tree (Fischbacher [9]) at the
Hong Kong University of Science and Technology Experimental Laboratory. For the first
treatment, three sessions were conducted, each of which involved ten to thirteen pairs of
individuals. For the second treatment, two sessions were conducted and each session in-
volved twenty individuals. In total, 108 subjects participated in the five sessions. On aver-
age, each session lasted for 1 hour. The average payment (including the HKD40 show-up
fee) was HKD143 (≈ USD18.4). Subjects had no prior experience in our experiments and
were recruited from the undergraduate / graduate population of the university. Upon
arrival at the lab, subjects were instructed to sit at separate computer terminals. Each
was provided with a copy of the experimental instructions (refer to Appendices C and D
for Treatments 1 and 2, respectively). Instructions were read aloud and supplemented by
slide illustrations.

A.1 Treatment 1

We conducted an experiment that consists of two parts. Two participants were anony-
mously matched, and in Part I, they played the classical rock-paper-scissor game three
times. In part II, the two participants played two chain games transformed from the ring
games in Kneeland [13, G1 on Page 2072 and G2 on Page 2,073]. More precisely, G6 below
describes the first chain game; the second chain game, denoted by G7, then results from
switching players’ payoffs (or equivalently, roles) in G6.15 Throughout the experiment,
the participants could not observe their opponents’ actions.

15Member 1’s and Member 2’s payoff matrix in G6 describes the first and the second ring games in

Kneeland [13], respectively. Each participant in Kneeland’s experiment plays both ring games; therefore,

we allowed participants in our experiment to play both chain games.
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G6

2’s choice

1’
s

ch
oi

ce

b1 b2 b3

A1 8 20 12

A2 0 8 16

A3 18 12 6

+

2’s choice

1’
s

ch
oi

ce

c1 c2 c3

B1 14 18 4

B2 20 8 14

B3 0 16 18

+

2’s choice

1’
s

ch
oi

ce

d1 d2 d3

C1 20 14 8

C2 16 2 18

C3 0 16 16

+

2’s choice

1’
s

ch
oi

ce

a1 a2 a3

D1 12 16 14

D2 8 12 10

D3 6 10 8

Member 1’s earnings

1’s choice

2’
s

ch
oi

ce

B1 B2 B3

a1 8 20 12

a2 0 8 16

a3 18 12 6

+

1’s choice

2’
s

ch
oi

ce

C1 C2 C3

b1 14 18 4

b2 20 8 14

b3 0 16 18

+

1’s choice

2’
s

ch
oi

ce

D1 D2 D3

c1 20 14 8

c2 16 2 18

c3 0 16 16

+

1’s choice

2’
s

ch
oi

ce

A1 A2 A3

d1 8 12 10

d2 6 10 8

d3 12 16 14

Member 2’s earnings

The k-order rationalizable actions of the two chain games in Part II are described in
Table 2.

Table 2: Predicted action profiles from
{

G6, G7}
Member 1 Member 2

Type G6 G7 G6 G7

1-order D1 D3 d3 d1

2-order (C2, D1) (C1, D3) (c1, d3) (c2, d1)

3-order (B2, C2, D1) (B1, C1, D3) (b1, c1, d3) (b2, c2, d1)

4-order (A3, B2, C2, D1) (A1, B1, C1, D3) (a1, b1, c1, d3) (a3, b2, c2, d1)

The experimental outcome is reported in Appendix B and it is also summarized
in Table 3 below. The first row presents the player’s revealed higher-order rationality
identified by our data from Part II. The second and third rows present the percentage
of subjects who choose the same action and different actions, respectively, in the three
rock-paper-scissor games in Part I, conditional on being categorized as each order in Part
II.
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For example, column (1) of the table tells us that 96% of the subjects were identified
as 1-order rational in Part II, and among the 1-order rational players, 26% chose the same
action, and 74% chose different actions in the three rock-paper-scissor games in Part I.

Table 3: Summary of Experimental Outcome

Revealed-rationality based on Part II

(1) (2) (3) (4) (5) (6)

1-order 2-order 3-order 1-3 orders 4-order Total

% of subjects 96% 63% 21% 90% 10% 100%

Actions in Part I
Same action 26% 21% 21% 26% 29% 26%

Different actions 74% 79% 79% 74% 71% 74%

If the deterministic-selection assumption (i.e., Assumption 2) holds, the participants
would play the same action for all three rock-paper-scissor games. Hence, the result in
Table 3 implies that 74% of the data violate Assumption 2.

Note that the ER assumption applies solely to agents with finite-order rationality.
Hence, we focus on the 90% of the participants (i.e., those who are not 4-order rational)
to test the ER assumption (Column (4) of Table 3).16 Because the payoffs of the three
rock-paper-scissor games remain unchanged, the players’ k-order payoffs are exactly the
same for any k. Hence, conditional on players not being 4-order rational, 74% of our data
violate the ER assumption. Consequently, conditional on the players being finite-order
rational, at least 66% (≈ 90%× 74%) of our data violate the ER assumption.17

A.2 Treatment 2

We conducted an experiment that consists of four sections. At the beginning of Sections
1 and 3, four participants were anonymously matched to play eight ring games of Knee-
land [13]. The orders of the eight games were randomly determined. We followed the

16Subjects who are identified as being 4-order rational in our experiments may also be ∞-order rational.

Thus, we excluded them when we tested the ER assumption.
17We also examined our Part II data (G6 and G7) to determine how many subjects violate the ER as-

sumption. Of our data, 28% violate the ER assumption, compared with 16% of the data that violate the ER

assumption in Kneeland [13].
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same procedure used in Kneeland [13].18 At the beginning of Sections 2 and 4, two par-
ticipants were anonymously matched to play the following three 2-player games: Meet
in New York, Matching Pennies, and Rock-Paper-Scissor games. The orders of the three
games were randomly determined. Throughout the experiment, we did not provide any
information feedback to make sure that the participants cannot observe their opponents’
actions. At the beginning of the experiment, we only revealed that the experiment con-
sists of four sections but the subjects were informed about which game they play in each
section only when they begin the new section.

We find that 67.5% of subjects in ”rock-paper-scissor”, 45% of subjects in ”match-
ing penny”, and 27.5% of subjects in the pure-coordination game chose different actions,
which implies violation of the ER assumption. If Kneeland’s ER assumption is satisfied,
subjects, regardless of their levels of rationality, should play the same action in the two
rounds as long as they are in the same position. However, we indeed found

• 77.5% of subjects chose different actions at least in one position,

• 45% of subjects chose different actions at least in two positions, and

• 20% of subjects chose different actions at least in three positions.

18The instructions of Kneeland [13] were adopted to conduct the ring games for Sections 1 and 3.
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Appendix C – Experimental Instructions for Treatment 1

INSTRUCTION

Welcome to the experiment. This experiment studies decision making between two individ-

uals. In the following hour or less, you will participate in decision making for two tasks (Tasks

1 and 2). Please read the instructions below carefully; the cash payment you will receive at the

end of the experiment depends on how you make your decisions according to these instructions.

Communication of any kinds with any other participants will not be allowed.

Your Cash Payment

Your total cash payment at the end of the experiment will be the sum of the number of

tokens that you will earn from the two tasks, translated into HKD with the exchange rate of 1

Token = 0.8 HKD, plus a 40 HKD show-up fee.

Your Group

There are 20 participants in today’s session. Half of the participants will be randomly as-

signed the role of Member 1 and the other half the role of Member 2. Your role will remain fixed

throughout the experiment. Prior to the first task, one Member 1 will be randomly and anony-

mously paired with one Member 2 to form a group of two. The two members in a group make

decisions that will affect their earnings from both tasks. Note that no information feedback about

the other member’s choices will be provided in the entire course of decision makings. You will

not be told the identity of the participant with whom you are matched, nor will that participant

be told your identity—even at the end of the experiment.

Task 1: Your Decision

At the beginning of Task 1, you will be randomly matched with a participant in the other

role in this room to play the following “rock-paper-scissor” game for three times. For each game,

both members of your group will independently choose one of the three actions, rock, paper, and

scissor.
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Member 1’s earning
2’s choice

1’
s

ch
oi

ce
rock paper scissor

rock 0 −5 5
paper 5 0 −5
scissor −5 5 0

Member 2’s earning
1’s choice

2’
s

ch
oi

ce

rock paper scissor
rock 0 −5 5

paper 5 0 −5
scissor −5 5 0

Your earnings will depend on the combination of your action and your opponent’s action.

These earning possibilities are represented in the table above. In your earning table, your action

will determine the row and your opponent’s action will determine the column. For example, if

you choose “rock” and your opponent chooses “scissor”, you would earn 5 tokens. If instead your

opponent chooses “paper”, you would earn -5. (Note that because of the show-up fee HKD 40,

you will always have positive earnings at the end of the experiment.)

You will be asked to play the game three times, and you will not observe your opponent’s

choices throughout the process. Your earnings from Task 1 is the sum of your earnings from the

three games.

Task 2: Your Decision

You and your opponent will be asked to play two games of the following form — the only
difference between the following game and the actual games that you will play is the payoffs.

Member 1’s set of actions: {A1, A2, A3} × {B1, B2, B3} × {C1, C2, C3} × {D1, D2, D3} ;

Member 2’s set of actions: {a1, a2, a3} × {b1, b2, b3} × {c1, c2, c3} × {d1, d2, d3} .

2’s choice

1’
s

ch
oi

ce

b1 b2 b3

A1 10 4 16
A2 20 8 0
A3 4 18 12

+

2’s choice

1’
s

ch
oi

ce

c1 c2 c3

B1 12 16 4
B2 0 12 8
B3 4 4 20

+

2’s choice

1’
s

ch
oi

ce

d1 d2 d3

C1 20 12 8
C2 6 8 18
C3 0 16 4

+

2’s choice

1’
s

ch
oi

ce

a1 a2 a3

D1 10 12 8
D2 6 20 18
D3 16 4 0

Figure 1: Member 1’s earnings

1’s choice

2’
s

ch
oi

ce

B1 B2 B3

a1 6 20 18
a2 16 4 0
a3 10 12 8

+

1’s choice

2’
s

ch
oi

ce

C1 C2 C3

b1 20 12 8
b2 6 8 18
b3 0 16 4

+

1’s choice

2’
s

ch
oi

ce

D1 D2 D3

c1 10 4 16
c2 20 8 0
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+

1’s choice

2’
s

ch
oi

ce

A1 A2 A3

d1 12 16 4
d2 0 12 8
d3 4 4 20

Figure 2: Member 2’s earnings
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Member 1 and Member 2 simultaneously and independently make decisions. Member 1

chooses one action out of a set of 12 actions described by {A1, A2, A3}×{B1, B2, B3}×{C1, C2, C3}×
{D1, D2, D3}, i.e., Member 1 chooses an action (A, B, C, D) with A ∈ {A1, A2, A3}, B ∈ {B1, B2, B3},
C ∈ {C1, C2, C3}, and D ∈ {D1, D2, D3}.

Similarly, Member 2 chooses an action (a, b, c, d) with a ∈ {a1, a2, a3}, b ∈ {b1, b2, b3}, c ∈
{c1, c2, c3}, and d ∈ {d1, d2, d3}.

The tables in Figure 1 describe the earnings of Member 1 in the game. Given (A, B, C, D)

chosen by Member 1 and (a, b, c, d) chosen by Member 2, the earnings of Member 1 consists of

four parts: (A, b) in the first table identifies the first part; (B, c) in the second table identifies the

second part; (C, d) in the third table identifies the third part; (D, a) in the fourth table identifies

the fourth part. Member 1’s final earning is the sum of the four parts.

Similarly, the tables in Figure 2 describe the earnings of Member 2 in the game. Given

(A, B, C, D) chosen by Member 1 and (a, b, c, d) chosen by Member 2, the earnings of Member 2

consists of four parts: (a, B) in the first table identifies the first part; (b, C) in the second table

identifies the second part; (c, D) in the third table identifies the third part; (d, A) in the fourth

table identifies the fourth part. Member 2’s final earning is the sum of the four parts.

For example, suppose that Member 1’s choice is (A1, B1, C3, D1) and Member 2’s choice is

(a1, b2, c1, d1). Then, Member 1’s earnings become 4 (the first table) + 12 (the second table) + 0

(the third table) + 10 (the forth table) = 26. Member 2’s earnings become 6 (the first table) + 18

(the second table) + 10 (the third table) + 12 (the forth table) = 46.

You will play two games of the form as above sequentially while you will not observe your

opponent’s choices throughout the process. Your earnings from Task 2 is the sum of your earnings

from these two games. You will be required to spend at least 300 seconds on each game. You may

spend more time on the games if you wish.

Administration

Your decisions as well as your monetary payment will be kept confidential. Remember that

you have to make your decisions entirely on your own; please do not discuss your decisions with

any other participants.

Upon finishing the experiment, you will receive your cash payment. You will be asked to

sign your name to acknowledge your receipt of the payment. You are then free to leave.
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If you have any question, please raise your hand now. We will answer your question indi-

vidually.

To ensure your comprehension of the instructions, we will provide you with a quiz in the
next page. We will go through the quiz after you answer it on your own. Note that the quiz is
also part of instructions, and your answers in the quiz do not affect your earnings from today’s
session.

Quiz

2’s choice

1’
s

ch
oi

ce

b1 b2 b3

A1 10 4 16
A2 20 8 0
A3 4 18 12

+

2’s choice

1’
s

ch
oi

ce

c1 c2 c3

B1 12 16 4
B2 0 12 8
B3 4 4 20

+
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1’
s

ch
oi

ce

d1 d2 d3

C1 20 12 8
C2 6 8 18
C3 0 16 4

+

2’s choice

1’
s

ch
oi

ce

a1 a2 a3

D1 10 12 8
D2 6 20 18
D3 16 4 0

Figure 1: Member 1’s earnings
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Figure 2: Member 2’s earnings

Consider the game above.

1. Suppose that Member 1’s choice is (A2, B1, C1, D3) and Member 2’s choice is (a1, b3, c2, d2).

1.1 Suppose that you are Member 1. What is your earning from

(a) the first table? (Your answer: )

(b) the second table? (Your answer: )

(c) the third table? (Your answer: )

(d) the forth table? (Your answer: )

(e) What is the sum of the above four earnings? (Your answer: )

1.2 Suppose that you are Member 2. What is your earning from

(a) the first table? (Your answer: )

(b) the second table? (Your answer: )

34



(c) the third table? (Your answer: )

(d) the forth table? (Your answer: )

(e) What is the sum of the above four earnings? (Your answer: )

2. Suppose that you are Member 1 and Member 2’s choice is (a1, b3, c2, d2). What is your
highest possible earning

a. from the first table? (Your answer: )

b. from the second table? (Your answer: )

c. from the third table? (Your answer: )

d. from the forth table? (Your answer: )

3. Suppose that you are Member 2 and Member 1’s choice is (A2, B1, C1, D3). What is your
highest possible earning

a. from the first table? (Your answer: )

b. from the second table? (Your answer: )

c. from the third table? (Your answer: )

d. from the forth table? (Your answer: )

Appendix D – Experimental Instructions for Treatment 2

INSTRUCTION

You are about to participate in an experiment in the economics of decision-making. If you
follow these instructions closely and consider your decisions carefully, you can earn a considerable
amount of money, which will be paid to you in cash at the end of the experiment. To ensure best
results for yourself, please DO NOT COMMUNICATE with the other participants at any point
during the experiment. If you have any questions, or need assistance of any kind, raise your hand
and one of the experimenters will approach you.

Today’s experiments consist of FOUR sections. The final cash payment will be the sum
of your earnings from the four sections, translated into HKD as the exchange rate of 1 token = 2
HKD, plus a show-up payment of HK$40 for arriving to the experiment on time and participating.
The following is the instruction for the first section. After you participate in the first section,
further instructions will be given to you via your computer screen.

Section 1
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You will play eight 4-player games. In each of these games, you will be randomly matched
with other participants currently in this room. For each game, you will choose one of three actions.
Each other participant in your game will also choose one of three actions.

Your Earnings

2’s action

Yo
ur

ac
ti

on

d e f
a 10 4 16
b 20 8 0
c 4 18 12

Player 2’s Earnings

3’s action

2’
s

ac
ti

on

g h i
d 12 16 4
e 0 12 8
f 4 4 20

Player 3’s Earnings

4’s action

3’
s

ac
ti

on

j k l
g 20 12 8
h 6 8 18
i 0 16 4

Player 4’s Earnings

Your action

4’
s

ac
ti

on

a b c
j 10 12 8
k 6 20 18
l 16 4 0

Your earnings will depend on the combination of your action and player 2’s action. These
earnings possibilities will be represented in a table like the one above. Your action will determine
the row of the table and player 2’s action will determine the column of the table. You may choose
action a, b, or c and player 2 will choose action d, e, or f. The cell corresponding to this combi-
nation of actions will determine your earnings. For example, in the above game, if you choose a
and player 2 chooses d, you would earn 10 tokens. If instead player 2 chooses e, you would earn
4 tokens. Player 2, Player 3, and Player 4’s earnings are listed in the other three tables. Player 2
may choose action d, e, or f, Player 3 may choose action g, h, or i, and Player 4 may choose action
j, k, or l. Player 2’s earnings depend upon the action he chooses and the action player 3 chooses.
Player 3’s earnings depend upon the action he chooses and the action Player 4 chooses. Player
4’s earnings depend upon the action he chooses and the action you choose. For example, if you
choose c, player 2 chooses e, player 3 chooses h, and player 4 chooses k, then you would earn 18
tokens, player 2 would earn 12 tokens, player 3 would earn 8 tokens, and player 4 would earn
18 tokens. The different earnings tables will appear in a random order for each game. As well,
the earnings tables will differ from game to game. So you should always look at the earnings and
order of the tables carefully at the beginning of each game.

Player 2’s Earnings

3’s action

2’
s

ac
ti

on

g h i
d 12 16 4
e 0 12 8
f 4 4 20

Player 4’s Earnings

Your action

4’
s

ac
ti

on

a b c
j 10 12 8
k 6 20 18
l 16 4 0

Your Earnings

2’s action

Yo
ur

ac
ti

on

d e f
a 10 4 16
b 20 8 0
c 4 18 12

Player 3’s Earnings

4’s action

3’
s

ac
ti

on

j k l
g 20 12 8
h 6 8 18
i 0 16 4

When you start each new game, you will be randomly matched with different participants.
We do our best to ensure that you and your counterparts remain anonymous. You will be required
to spend at least 90 seconds on each game. You may spend more time on each game if you wish.

Earnings from Section 1

For the payment from this section, one game will be randomly selected at the end of the
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experiment. Every participant will be paid based on their actions and the actions of their randomly
chosen group members in the selected game. Any of the games could be the game selected. So you
should treat each game like it will be the one determining your payment. You will be informed
of your payment, the game chosen for payment, what action you chose in that game, and the
action of your randomly matched counterpart only at the end of the experiment. You will not
learn any other information about the actions of other players in the experiment. The identity of
your randomly chosen counterparts will never be revealed.

Quiz

Player 3’s Earnings

4’s action

3’
s

ac
ti

on

j k l
g 20 12 8
h 6 8 18
i 0 16 4

Player 2’s Earnings

3’s action

2’
s

ac
ti

on

g h i
d 12 16 4
e 0 12 8
f 4 4 20

Player 4’s Earnings

Your action

4’
s

ac
ti

on

a b c
j 20 12 8
k 6 8 18
l 0 16 4

Your Earnings

2’s action

Yo
ur

ac
ti

on

d e f
a 10 4 16
b 20 8 0
c 4 18 12

Consider the game above. Your earnings are given by the blue numbers. You may choose a or b or c.

1. Your earnings depend on your action and the action of which other player?

(a) Player 3

(b) Player 2

(c) Player 4

2. Suppose you choose a, Player 2 chooses f, Player 3 chooses i, Player 4 chooses k. What will your

earnings be?

(a) 10

(b) 0

(c) 16

(d) 6

3. Suppose Player 2 chooses d, Player 3 chooses h, and Player 4 chooses j. Which action will give you

the highest earning?

(a) a

(b) b

(c) c
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4. Suppose you choose c. What is your highest possible earning?

(a) 20

(b) 18

(c) 4

5. Suppose you choose b. What is your lowest possible earning?

(a) 0

(b) 4

(c) 8

Section 2 (presented only via the screen.)

You will play three 2-player games. In each of these games, you will be randomly matched
with another participant currently in this room. For each game, you will choose one of two/three
actions. The other participant (player 2) in your game will also choose one of two/three actions.
Your earnings will depend on the combination of your action and player 2’s action. These earnings
possibilities will be represented in a table like the one below. Your action will determine the row
of the table and the other player’s action will determine the column of the table.

Your Earnings

2’s action

Yo
ur

ac
ti

on

a b c

a 0 5 10

b 5 0 10

c 15 0 15

Player 2’s earning

Your action

2’
s

ac
ti

on

a b c

a 0 10 5

b 5 10 0

c 10 0 5

When you start each new game, you will be randomly matched with different participants.
We do our best to ensure that you and your counterparts remain anonymous. You will be required
to spend at least 30 seconds on each game. You may spend more time on each game if you wish.

Earnings from Section 2

For the payment from this section, one game will be randomly selected at the end of the
experiment. Every participant will be paid based on their actions and the actions of the randomly
chosen counterpart in the selected game. Any of the games could be the game selected. So you
should treat each game like it will be the one determining your payment. You will be informed
of your payment, the game chosen for payment, what action you chose in that game, and the
action of your randomly matched counterpart only at the end of the experiment. You will not
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learn any other information about the actions of other players in the experiment. The identity of
your randomly chosen counterpart will never be revealed.

Section 3 (presented only via the screen.)

You will play eight 4-player games. In each of these games, you will be randomly matched
with other participants currently in this room. For each game, you will choose one of three actions.
Each other participant in your game will also choose one of three actions.

Your Earnings

2’s action

Yo
ur

ac
ti

on

d e f

a 10 4 16

b 20 8 0

c 4 18 12

Player 2’s Earnings

3’s action

2’
s

ac
ti

on

g h i

d 12 16 4

e 0 12 8

f 4 4 20

Player 3’s Earnings

4’s action

3’
s

ac
ti

on

j k l

g 20 12 8

h 6 8 18

i 0 16 4

Player 4’s Earnings

Your action

4’
s

ac
ti

on

a b c

j 10 12 8

k 6 20 18

l 16 4 0

The rule of the games in this section is the same as the rule of the games in Section 1. How-
ever, the different earnings tables will appear in a random order for each game. As well, the
earnings tables will differ from game to game. So you should always look at the earnings and
order of the tables carefully at the beginning of each game.

When you start each new game, you will be randomly matched with different participants.
We do our best to ensure that you and your counterparts remain anonymous. You will be required
to spend at least 90 seconds on each game. You may spend more time on each game if you wish.

Earnings from Section 3

For the payment from this section, one game will be randomly selected at the end of the
experiment. Every participant will be paid based on their actions and the actions of their randomly
chosen group members in the selected game. Any of the games could be the game selected. So you
should treat each game like it will be the one determining your payment. You will be informed
of your payment, the game chosen for payment, what action you chose in that game, and the
action of your randomly matched counterpart only at the end of the experiment. You will not
learn any other information about the actions of other players in the experiment. The identity of
your randomly chosen counterparts will never be revealed.

Section 4 (presented only via the screen.)

You will play three 2-player games. In each of these games, you will be randomly matched
with another participant currently in this room. For each game, you will choose one of two/three
actions. The other participant (player 2) in your game will also choose one of two/three actions.
Your earnings will depend on the combination of your action and player 2’s action. These earnings
possibilities will be represented in a table like the one below. Your action will determine the row
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of the table and the other player’s action will determine the column of the table.

Your Earnings

2’s action

Yo
ur

ac
ti

on

a b c

a 0 5 10

b 5 0 10

c 15 0 15

Player 2’s earning

Your action

2’
s

ac
ti

on

a b c

a 0 10 5

b 5 10 0

c 10 0 5

When you start each new game, you will be randomly matched with different participants.
We do our best to ensure that you and your counterparts remain anonymous. You will be required
to spend at least 30 seconds on each game. You may spend more time on each game if you wish.

Earnings from Section 4

For the payment from this section, one game will be randomly selected at the end of the
experiment. Every participant will be paid based on their actions and the actions of the randomly
chosen counterpart in the selected game. Any of the games could be the game selected. So you
should treat each game like it will be the one determining your payment. You will be informed
of your payment, the game chosen for payment, what action you chose in that game, and the
action of your randomly matched counterpart only at the end of the experiment. You will not
learn any other information about the actions of other players in the experiment. The identity of
your randomly chosen counterpart will never be revealed.
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