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Abstract

We consider an environment in which bidders decide whether to jump bids in a

simple two-bidder ascending auction with independent private values. We compare

two types of equilibria, one that involves jump bidding and another that does not.

We show that the revenue in the jump bidding equilibrium dominates that in the no-

jump equilibrium when bidders are risk averse. Isolating the revenue impact of jump

bidding from that of overbidding, our experimental design allows us to demonstrate

that sellers’ revenue increases due to jump bidding but only insignificantly so.
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“A collective gasp swept the ballroom as the first round of results was announced:

Bidding had started at $20 million each for two licenses and $10 million for five others.

That was several times the sum that the experts had projected for the first round.” The

Washington Post, July 26, 1994, p. D1, on the Nationwide Narrowband PCS auction

in July 1994

1 Introduction

A fundamental question in economics is how prices are formed in markets. Auctions

provide an excellent framework to study this question. To sell an object in an auction,

sellers choose the optimal auction rule to maximize profits, and buyers choose the optimal

strategies to compete to win the object. That is, the price of the object sold is a result of

the interaction between sellers and buyers.

In an ascending-price auction, the price gradually increases in fixed increments.

During the auction, however, any bidder may call out a price that is much higher than

the current price plus the increment. This “jump-bidding is an endemic feature of real-world

ascending auctions, including not only FCC wireless spectrum auctions but also online (eBay)

auctions and conventional art and antiques auctions run by Sotheby’s and Christie’s for hundreds

of years” (Grether, Porter, and Shum [18]). For example, Cramton [11] documents that in

an FCC radio spectrum auction, forty-nine percent of the new bids are jump bids.1

Why do bidders raise their prices voluntarily? An answer may be found in one of

the most famous examples of jump bidding, as described below by Avery [2].

An infamous recent example occurred in 1988 when Ross Johnson, the CEO of RJR

Nabisco, made a bid of $75 for the shares of his own company when the stock was

trading at $55. In further competition. . . Kohlberg, Kravis and Roberts (KKR) raised

Johnson’s bid to $90. KKR won the bidding at a final price of $106 after only a few

more rounds of bidding. Later, George Roberts admitted that his company would not

1Avery [2], Cramton [10], [11], and Daniel and Hirshleifer [13] offer numerous real-life jump bidding
examples. Isaac, Salmon and Zillante [23] present field data about jump bidding from US FCC spectrum
license auctions and UK 3G spectrum auctions.
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have competed if Johnson had started with a higher opening bid of $90 or more.

Researchers have had a fairly good understanding of jump bidding, albeit mostly

on the buyers’ side. By jump bidding to a high price, a bidder may have to bear the cost

of paying more than necessary; however, the bidder may receive the benefit of driving his

opponents to quit earlier in the bidding than they would have otherwise. When the latter

force outweighs the former force, jump bidding occurs. Daniel and Hirshleifer [13] sug-

gest that bidding is costly, and bidders jump bids and quit early to reduce costs2; Avery

[2] suggests that the phenomenon known as the winner’s curse drives jump bidding.3

The situation is, however, much less clear on the sellers’ side. In particular, current

theories (e.g., Avery [2], Banks, Olson Porter, Rassenti, and Smith [5], Cybernomics [9],

Daniel and Hirshleifer [13], Hörner and Sahuguet [20]) suggest that jump bidding reduces

sellers’ revenue, a suggestion that is in sharp contrast to the fact that jump bidding contin-

ues to be allowed rather than forbidden by auctioneers worldwide. This issue therefore

raises the following question:

Does jump bidding increase sellers’ revenue?

If the answer to this question is no, then all auctioneers should forbid jump bidding as

long as their main objectives are to maximize their revenue.4 If the answer is yes, then

something is clearly missing in our understanding of jump bidding. Thus, the objective

of this paper is to investigate whether jump bidding increases sellers’ revenue.

We consider a simple stylized model of a two-bidder ascending auction with in-

dependent private value (hereafter, IPV) in which bidders decide whether to jump bids.

The auction proceeds with the jump stage, followed by the bidding stage. In the jump

stage, each bidder simultaneously chooses the initial opening bid; in the bidding stage,

a standard English auction with the starting price at the maximum of the initial bids is

2Daniel and Hirshleifer [13] consider an auction with sequential bids and construct an equilibrium in
which the first bidder uses a monotonic bidding strategy that fully reveals his/her value to the second
bidder. After observing a bid from the first bidder, the second bidder may understand that there is no
chance to win and thus want to quit early to reduce the bidding costs.

3By jump bidding, a bidder signals his intent to follow a more aggressive strategy. As a result, his
competitors choose a less aggressive strategy and quit early because of the winner’s curse.

4Alternatively, one would need to develop a new theory of optimal auction design without assuming
revenue maximization. In any case, providing an answer to the question is the first important step.
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conducted, and each bidder chooses the price at which to exit. We find that this game has

two types of equilibria, one in which jump bidding takes place to signal one’s value and

another in which no such jump bidding occurs. Moreover, we show that these two types

of equilibria are Pareto ranked when bidders are risk averse. The jump bidding equilibria

dominate no-jump equilibria in revenue.

To illustrate the main idea, consider a simple example of a 2-bidder English auction

with the uniform prior. Consider the possibility that jumping from the current price of

$0 to $700 can signal that one’s value is greater than or equal to $1,000. Suppose that my

value of an object for sale is $1,000. By viewing such a signal, all types of my opponent

with values of less than $1, 000 would quit immediately because they expect to have no

chance to win. By paying a price of $700, I receive a benefit by deterring my competitor

with values up to 1, 000; therefore, I prefer jump bidding. To make the above strategy

profile an equilibrium, the signaling must be credible (i.e., I prefer not to jump bid if my

value is less than $1, 000), which can be supported by a certain type of risk attitudes. For

example, the non-decreasing absolute risk aversion introduced in McAfee and Vincent

[31] is sufficient to support the equilibrium described above. Furthermore, suppose that I

am risk averse. In that case, jump bidding serves as insurance: for both jumping and not

jumping, I win over the same group of types of my opponent (i.e., types with value less

than $1, 000), but I pay a fixed price of $700 for jumping rather than a random winning

price between $0 and $1, 000 (with an expected value of $500) for not jumping. Hence,

by jump bidding, I take the insurance and surrender some risk premium ($200 = $700´

$500) to the seller. As a result, the seller’s revenue increases.

To the best of our knowledge, little empirical and experimental research has been

undertaken on the revenue implications of jump bidding, and we design lab experiments

to answer this question.5 Compared to other methodologies (e.g., empirical analysis, field

experiments), lab experiments are able to fully control all other economic factors except

5Isaac, Salmon, and Zillante [22] are the first researchers to use laboratory experiments to test various
jump bidding models. Their study, which focuses on jump bidding on the bidders’ side, indicates that
the jump bidding observed in field auctions is likely linked to bidders’ impatience. Recently, Grether,
Porter, and Shum [18] adopted the field experiment approach and manipulated the price grid, the possible
amounts that bidders can bid above the current price, on online auction sites that sell used automobiles
via ascending auctions. These researchers find peculiar patterns of bidding, suggesting that bidders are
“cyber-shills” working on behalf of sellers.
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jump bidding and to distill the pure revenue effect of jump bidding.6

We implement a simple two-bidder ascending auction game in the laboratory via

the clock auction implementation à la Kagel, Harstad and Levin [26]. Three treatment

conditions were considered; the first two treatments had an initial stage in which each

bidder could choose to jump bid or not. The only difference across the two treatments is

whether any jump amount is allowed (in the Baseline treatment) or only a particular jump

amount (in the Binary treatment) is allowed. The third treatment is the No-jump treatment

in which jump bidding is not allowed. The data from the three treatments show that the

revenues obtained in the two treatments that allow jump bidding are significantly and

substantially higher than the hypothetical revenue calculated based on the dominant-

strategy equilibrium. However, the revenue obtained in the No-jump treatment is also

substantially higher than the hypothetical revenue and not statistically different from the

revenues obtained from the Baseline and Binary treatments. This observation suggests

that a substantial degree of overbidding exists in our experiment, a well-documented phe-

nomenon in ascending auction experiments, i.e., bidders remain in an auction even if

the prices exceed their values (see, e.g., Kagel, Harstad, and Levin [26], Kagel and Levin

[25]).7 The degree of overbidding observed in the No-jump treatment is significantly more

substantial than those in the other two treatments.

To understand the revenue implications of jump bidding, we thus have to eliminate

overbidding.8 We attempt to eliminate overbidding by designing an Amended Random

Payment (ARP) scheme: 10 rounds of English auctions are conducted, and only one round

is randomly and independently chosen to be the payment round for each bidder, i.e.,

each bidder’s final payoff depends only on the outcome of the auction in his/her pay-

6Another potential difficulty in other methodologies is how to estimate the value distribution from the
jump prices, which is necessary to determine the revenue effect of jump bidding.

7However, as shown in several papers (e.g., Kagel, Harstad, and Levin [26], Garratt, Walker and Wood-
ers [16]), overbidding is common only among inexperienced bidders and tends to be a short-term phe-
nomenon. Malmendier and Lee [28] empirically identify overbidding in eBay auctions by comparing on-
line auction prices to fixed prices for the same item on the same website. Although only a small fraction of
bidders are identified as overbidders, these bidders generate a large fraction of auctions with overbidding.
The results are explained by limited attention.

8Section 4 presents data from three treatments with no experimental control for overbidding and shows
that actual revenues from the treatments with and without jump bidding are not significantly different. Our
exit survey results reveal that overbidding is primarily induced by spitefulness, which is consistent with
the findings in the literature (Andreoni, Che and Kim [1], Cooper and Fang [8]).
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ment round.9 Furthermore, none of the bidders know their payment round, and hence,

in every round, every bidder attempts to maximize profits. However, we amended the

standard random payment scheme by allowing every bidder to know whether each round

is a payment round for his/her opponent. As a result, in every nonpayment round for the

opponent, any concern related to other-regarding preferences is fully eliminated for every

bidder. Our experimental data show that our ARP design eliminates 76% of overbidding.

Successfully isolating the overbidding phenomenon, the data from the ARP design clearly

demonstrate the revenue implications of jump bidding. The revenue obtained from the

treatment with jump bidding is significantly and substantially higher than that obtained

from the treatment without jump bidding.

The remainder of the paper proceeds as follows. In Section 2, we present a model of

jump bidding with risk aversion. In Sections 3 and 4, we discuss the experimental design

and findings, respectively. Section 5 presents our new experimental design to control for

overbidding behavior. Section 6 provides regression results on the determinants of jump

bidding. Section 7 concludes the paper. A review of the related literature is presented in

the remainder of this section.

1.1 Related Literature

This section is devoted to a review of the related literature. In particular, we discuss sev-

eral theoretical and experimental papers that attempt to explain why buyers participate

in jump bidding.

Given private values, it is well known that bidding one’s true value is a weakly

dominant strategy in a 2nd-price auction, which is strategically equivalently to the classi-

cal English auction without jumps. This leads to the following question: why do bidders

jump bid? Two papers have provided well-reasoned answers. Daniel and Hirshleifer [13]

argue that bidding is costly and that bidders jump bid to reduce costs. In their model,

bidders are risk neutral, and thus revenue equivalence holds without bidding costs. With

9This“random lottery incentive system” is widely used to motivate subjects in an experiment with
multiple rounds. Cubitt, Starmer and Sugden [12] provide evidence for the validity of the incentive system.
Azrieli, Chambers and Healy [3] show that under a mild assumption imposed on subjects’ preferences, the
random lottery incentive system is the only incentive-compatible mechanism.
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bidding costs, revenue decreases to compensate for the effect induced by the bidding

costs. Avery [2] studies an affiliated-value model and argues that the winner’s curse

drives jump bidding. By jump bidding, a bidder signals his/her intent to follow a more

aggressive strategy. As a result, his/her competitors choose a less aggressive strategy and

quit early to avoid the winner’s curse.

Since Avery [2] and Daniel and Hirshleifer [13], several other papers have investi-

gated jump bidding in various contexts. Easley and Tenorio [14] study internet auctions

and explain jump bidding by entry costs and uncertainty over future entries. Gunderson

and Wang [19], Hörner and Sahuguet [20] and Zheng [36] also construct jump-bidding

equilibria in private-value models. Gunderson and Wang [19] assume a disconnected

support of bidders’ values and suggest that jump bidding is a signal of high value. Instead

of focusing on why people engage in jump bidding, Hörner and Sahuguet [20] examine

how bluffing and sandbagging (i.e., nonmonotone bidding strategies) are implemented in

jump bidding. Zheng [36] considers multiunit auctions and studies jump bidding as a

signaling device across auctions. In all of these papers, jump bidding is regarded as a sig-

nal by the bidder. The difference among them is what makes the signaling credible. We

relate jump bidding to risk attitudes and offer a novel explanation. Goeree [17] studies

a modified English auction followed by aftermarket competition.10 Bidders signal high

values in the English auction to gain an advantage in the aftermarket, and sellers’ rev-

enue increases as a result. Signaling occurs only when all bidders but one have dropped

out of the auction, with the final bidder remaining in the auction until the price reaches

the optimal signaling value. However, under the traditional English auction rules that

we consider, such signaling is excluded because the auction ends immediately when only

one bidder remains.

Other authors explain jump bidding using behavioral reasons. Bidders’ irrational-

ity may be a reason for jump bidding, as shown in Rothkopf and Harstad [34]. Although

Isaac, Salmon, and Zillante [23] model jump bidding as a strategic dynamic game, infor-

mation updating in their game is non-strategic.11 Malmendier and Lee [28] propose that

10The main objective of Goeree [17] is to compare signaling effects in first-price, second-price and English
auctions when aftermarket competition exists.

11In the model of Isaac et al. [23] (page 150), after seeing a jump bid of p from bidder ´i, bidder i forms
a naive belief of [v´i ě p], although only bidders ´i with v´i ě v ą p make such a jump in equilibrium,
i.e., bidders do not use information from Bayesian updating according to the equilibrium strategy profile
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people may bid above their true values for behavioral reasons: limited memory, limited

attention, joy of winning, etc. Isaac et al. [22] use experiments to test various jump-

bidding models, finding that the jump bidding observed in field auctions is likely the

result of bidders’ impatience.

The idea that sellers can provide some sort of insurance to risk-averse buyers to

generate more revenue was discussed in a few earlier papers. In particular, Budish and

Takeyama [6] and Reynolds and Wooders [33] both suggest that a buy-it-now price can

serve as insurance for risk-averse bidders and thus increases sellers’ revenue. In their

models, the seller also offers the buyer an opportunity to pay a (potentially) higher fixed

price to avoid uncertainty. The buyer takes the fixed price and surrenders some risk

premium to the seller. As a result, the seller’s revenue increases. In both Budish and

Takeyama [6] and Reynolds and Wooders [33], however, the buy-it-now option is chosen

exogenously by the seller. In contrast, jump bidding in our paper is chosen endogenously

by the buyers and thus plays a signaling role.

Auctions with risk-averse bidders have been explored previously. For example,

Maskin and Riely [29] and Matthews [1] study the impact of risk aversion on revenue,

with the former taking the seller’s view and the latter taking the buyer’s view. More

recently, Smith and Levin [35] and Li, Lu, and Zhao [27] study risk-averse bidders with

endogenous entry. Hu, Matthews, and Zou [21] study the impact of risk aversion on the

optimal reserve price. Bajari and Hortaçsu [4] show that a model assuming risk-averse

bidders can explain their experimental auction data better than an alternative model with

risk-neutral bidders. To the best of our knowledge, we are the first to associate risk aver-

sion with jump bidding.

2 A Theory of Jump Bidding

We consider a 2-bidder IPV setup. We model the auction by a 2-stage game: the jump

stage (Stage 1), followed by the bidding stage (Stage 2). In Stage 1, each bidder simulta-

neously chooses the initial bid (i.e., the jump bid); in Stage 2, a standard English auction

and all prior information.
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with the starting price at the maximum of the initial bids is conducted, and each bid-

der chooses the price at which to exit. This simple stylized model à la Avery [2] is a

workhorse for us to demonstrate the revenue implications of jump bidding, and it is the

simplest possible way to understand the role of jump bidding in the seller’s revenue.12

One indivisible object is for sale, with bidders 1 and 2 having values v1, v2, respec-

tively. The values have an i.i.d. distribution on the support [0, 1] with cdf F(¨). Let bidder

´i denote bidder i’s opponent. The two bidders are expected utility maximizers with the

same differentiable and strictly increasing Bernoulli utility function u(¨). We normalize

u(0) to 0. Suppose that u3(t) exists. We list a few assumptions on risk attitudes as follows.

risk-neutral bidders: u2(t) = 0; risk-averse bidders: u2(t) ă 0,

CARA bidders:
d
(
´

u2(t)
u1(t)

)
dt = 0; IARA bidders:

d
(
´

u2(t)
u1(t)

)
dt ą 0.

In Stage 1, each bidder i chooses a jump bid βi P [0, 1]; in Stage 2, an English auc-

tion with starting price max tβi, β´iu is conducted, and each bidder i chooses the price

bi (βi, β´i, vi) ě max tβi, β´iu at which to exit. Bidder i wins the auction if bi (βi, β´i, vi) ą

b´i (βi, β´i, v´i). A tie occurs if bi (βi, β´i, vi) = b´i (βi, β´i, v´i). When a tie occurs, bid-

der i wins if bi (βi, β´i, vi) = b´i (βi, β´i, v´i) = βi ą β´i, and in all other cases, a fair coin

determines the winner. Suppose that bidder i is the winner. Then, he/she wins at price

b´i (βi, β´i, v´i) and obtains utility u [vi ´ b´i (βi, β´i, v´i)], while bidder ´i gets 0.

Throughout the paper, we adopt the solution concept of perfect Bayesian equilib-

rium (PBE). As a benchmark, the usual no-jump equilibrium is defined as follows.

pσi :

 stage 1: βi = 0;

stage 2: bi (βi, β´i, vi) = max tβi, β´i, viu .


Following (pσ1,pσ2), no one jumps in Stage 1, and each bidder remains in the auction in

Stage 2 until the price reaches his/her true value. The usual argument shows that (pσ1,pσ2)

12Clearly, real-life jump bidding is much more complicated. For instance, it may involve multiple bid-
ders and multiple rounds of jump bidding. However, it is logically straightforward but tedious to extend
our model to a setup with multiple bidders and multiple rounds of jump bidding, and all of our results
could be extended to such a setup with the intuition remaining the same. See Appendix E for further
discussion of equilibria with two rounds of jump bidding and its revenue implications.
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is a PBE.

Proposition 1 (no-jump PBE). (pσ1,pσ2) is a PBE.

We now define a class of jump bidding equilibria. For any v P [0, 1], define k(v) P

[0, 1] to be the unique number satisfying13

F(v)u(v´ k(v)) =
ż v

0
u(v´ v1)dF(v1). (1)

Fix any (v˚, k(v˚)) P (0, 1)ˆ (0, 1); we construct a jump bidding equilibrium (σ˚1 , σ˚2 ) as

follows.14

σ˚i :


stage 1: βi =

$

&

%

0, if vi ă v˚;

k(v˚), if vi ě v˚.

stage 2: bi (βi, β´i, vi) =

$

&

%

max tβi, β´iu , if β´i = k(v˚) and vi ă v˚;

max tβi, β´i, viu , otherwise.



By following σ˚i , the high types of bidder i (i.e., vi ě v˚) jump to k(v˚) in Stage 1

and the low types of bidder i (i.e., vi ă v˚) do not jump. That is, bidder i uses the jump

bid k(v˚) to signal his/her high values. In the case in which β´i = k(v˚) and vi ă v˚,

bidder i infers that v´i ě v˚ and expects no chance to win, and hence, bidder i finds it a

best reply to quit immediately. In any other case, bidder i follows the weakly dominant

strategy bi (βi, β´i, vi) = max tβi, β´i, viu in the clock auction in Stage 2.

Proposition 2. (σ˚1 , σ˚2 ) is a PBE for risk-neutral, CARA and IARA bidders.

We provide an intuition of the proof here. To make (σ˚1 , σ˚2 ) a PBE, the jump bid must

be credible, i.e., the high types prefer “jumping to k(v˚)” to “no jump,” and the low types

prefer “no jump” to “jumping to k(v˚). First, consider the threshold type v˚, and for both

options, he/she wins the auction if and only if v´i ď v˚. In addition, the only difference

13F(v)u(v ´ y) is strictly decreasing in y. Because F(v)u(v ´ 0) ě
şv

0 u(v ´ v1)dF(v1) ě F(v)u(v ´ v),
there exists a unique k(v) for each v P [0, 1] such that equation (20) is satisfied.

14Rigorously, we need to specify beliefs on off-equilibrium paths for a PBE. For notational ease, we omit
it because off-equilibrium paths occur only in Stage 2 (i.e., a standard English auction), and bidding the
true value is a weakly dominant strategy regardless of beliefs. As a result, our equilibrium survives the
equilibrium refinement that imposes an additional restriction on off-path beliefs (e.g., the intuitive criteria).
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is that she wins at the fixed price k(v˚) for “jumping to k(v˚),” while he/she wins at a

random price v´i „ [0, v˚] with cdf F(v´i)
F(v˚) for “no jump.” By (20), k(v˚) is defined to make

type v˚ indifferent between the two options. Second, consider a high-type bidder i (i.e.,

vi ą v˚). He/she faces exactly the same dilemma as type v˚: Conditional on v´i ď v˚,

he/she wins at the fixed price k(v˚) for “jumping to k(v˚),” while he/she wins at a ran-

dom price v´i „ [0, v˚] with cdf F(v´i)
F(v˚) for “no jump. ”15 Given CARA/IARA, this high

type is weakly/strictly more risk averse than type v˚; i.e., he/she is willing to sacrifice

weakly/strictly more to eliminate the same risk. Hence, this high type weakly/strictly

prefers “jumping to k(v˚)” (i.e., the fixed price k(v˚)) to “no jump” (i.e., the random

price v´i „ [0, v˚] with cdf F(v´i)
F(v˚) ). Similarly, a CARA/IARA low type (i.e., vi ă v˚)

weakly/strictly prefers “no jump” to “jumping to k(v˚).”

The following theorem explains why jump bidding increases revenue.

Theorem 1 (Seller’s Revenue). Given risk-averse bidders, the strategy profile (σ˚1 , σ˚2 ) leads to

a higher expected revenue for the seller than (pσ1,pσ2).

Theorem 1 compares two strategy profiles (σ˚1 , σ˚2 ) and (pσ1,pσ2) that may not necessarily

be an equilibrium. In Proposition 2, we show that risk-neutral, CARA and IARA are

sufficient conditions for (σ˚1 , σ˚2 ) to be an equilibrium. However, they are not necessary

conditions. Moreover, there may be cases in which risk aversion holds and CARA or

IARA fail; nevertheless, a jump bidding equilibrium exists. Theorem 1 covers such cases

and compares the seller’s revenue from the two different types of strategy profiles.

The intuition for Theorem 1 is straightforward: jump bidding serves as insurance.

By jump bidding, high types (of bidder i) pay the fixed price k(v˚) to insure themselves

against random winning price v´i(ď v˚). If the bidders are risk averse, they surrender

the risk premium to the seller.

Furthermore, both bidders are weakly better off in the jump bidding equilibrium.

Let Eui(vi|εi, ε´i) denote the expected utility of bidder i with value vi when the strategy

profile (εi, ε´i) is chosen by the two bidders.

15Conditional on v´i ą v˚, the two options induce the same outcome.
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Theorem 2 (Bidders’ Welfare). For a PBE (σ˚1 , σ˚2 ), Eui
(
vi|σ

˚
i , σ˚

´i
)
ě Eui (vi|pσi,pσ´i) for

every i P t1, 2u and every vi P [0, 1].

Theorems 1 and 2 suggest that the jump-bidding equilibrium (σ˚1 , σ˚2 ) is (ex ante

and interim) weakly Pareto superior to the no-jump equilibrium (pσ1,pσ2). The proofs of

Proposition 2 and Theorems 1 and 2 can be found in Appendix B.

Note that our focus is on understanding the revenue effect qualitatively rather than

identifying specific equilibria or measuring the exact revenue impact quantitatively. Clearly,

our construction of one-threshold jump-bidding equilibria can be extended in a straight-

forward way to multithreshold equilibria and/or equilibria in which bidders have dif-

ferent thresholds for jumps. Nevertheless, all these equilibria share the same qualitative

revenue effect, i.e., jump bids serve as insurance, and the seller’s revenue increases when

risk-averse bidders follow a jump-bid equilibrium. For example, Appendix E presents

the construction of two-threshold jump-bidding equilibria and shows that it qualitatively

generates the same revenue implications.

3 Experimental Design

In our experimental design, there were a total of three treatments, as summarized in Table

1.

Table 1: Experimental Treatments

Baseline Binary No-Jump

Jump bids allowed in Stage 1 Any integer in [0, 60] 0 or 20 Not Allowed

We used the uniform value distribution over the support t0, 1, ..., 60u for our ex-

perimental implementation. The three treatments differ only with respect to what was

allowed in Stage 1. In the Baseline treatment, individuals are allowed to make an initial

bid of any integer in [0, 60] inclusively. In the Binary treatment, the initial bid is a binary
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choice between 0 and 20. In the No-Jump treatment, the initial jump bid is not allowed,

i.e., the initial bid must be 0.

There are two reasons to include the Binary treatment in our design, although having

the binary options for the initial bid may not appear very natural. First, it is standard in

the literature (e.g., Avery [2]) to model jump bidding by having an initial bid stage with

only binary options. Second, the natural setup with more than two options in the initial-

bid stage as in our Baseline treatment may suffer from the problem of multiple equilibria

because we are free to choose the out-of-equilibrium belief for any initial bid never made

in equilibrium. By offering only the binary options, we attempt to alleviate the problem

of multiple equilibria and make a particular initial bid more focal.16 The choice of 20 for

the jump bidding allowed in the Binary treatment is guided by two considerations: 1) the

jump amount is not too high relative to the upper bound of the value distribution such

that we expect to observe jump bidding reasonably frequently, and 2) it is not too low

such that the revenue impact is substantial in magnitude if jump bidding occurs.

3.1 Experimental Procedure

The experiment was conducted in English using z-Tree (Fischbacher, [15]) at the Hong

Kong University of Science and Technology Experimental Laboratory. Two sessions each

for the Baseline and Binary treatments and three sessions for the No-jump treatment were

conducted using a between-subjects design. Each session involved two independent match-

ing groups, each of which had five pairs of individuals. In total, 140 subjects participated

in 7 sessions.17 Subjects had no prior experience in our experiments and were recruited

from the undergraduate/graduate population of the university.

Upon arrival at the lab, subjects were instructed to sit at separate computer ter-

minals. Each was given a copy of the experimental instructions (see Appendix C). The

16More formally, one can show that there is a unique jump-bidding equilibrium in the environment with
the binary initial bids t0, ku with k P (0, 1) for risk-neutral, CARA and IARA bidders. The unique jump-
bidding equilibrium is σ˚i presented in Proposition 2 with βi = k if and only if vi ě v˚ where v˚ P (0, 1) is
uniquely identified.

17In Section 5, we present data from two additional treatments, each of which has two sessions. When
including these four sessions with 80 additional subjects, we had 220 subjects participating in 11 sessions.
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instructions were read aloud and supplemented by slide illustrations. In each session,

subjects first participated in one practice round and then 10 official rounds. At the be-

ginning of each session, participants were divided into two equal-sized matching groups.

Within the matching group, participants were randomly matched to form a two-person

pair in each round and randomly rematched after each round to form new pairs. Thus,

each matching group provides an independent observation for our subsequent data anal-

ysis.

We illustrate the instructions for the Baseline treatment. The full instructions can be

found in Appendix C. At the beginning of each round, the computer randomly drew a

value for each individual with equal probability in the range between 0 and 60. Prior

to the first session of our experiments, we randomly and independently drew the set

of values for each individual and for each round and used it for all sessions (and all

matching groups) to have a tight revenue comparison across treatments.18 Each subject

was privately informed about his/her own value but not those of others. In each round,

each subject was endowed with 60 tokens and was asked to make a bid to win an auction

that consisted of the following two stages: Initial Bidding Stage (Stage 1) and Price Clock

Stage (Stage 2).19

In the initial bidding stage, subjects were asked to place an initial bid of any integer

number between 0 and 60 inclusively.20 The maximum of the initial bids in a pair became

the initial price in the second stage. After all subjects submitted their initial bids, the

initial price was announced for each pair, and they were asked to stay with the screen

for a number of seconds – randomly determined between 5 seconds and 15 seconds – to

consider what to do in the next stage. The waiting time was independent of the initial

bids. If one’s submitted initial bid was strictly lower than his/her opponent’s initial bid,

he/she was asked to decide whether to continue or to opt out. If one opted out, his/her

opponent won the auction with the initial price. Otherwise, we proceeded to Stage 2. If

a bidder submitted an initial bid higher than or equal to his/her opponent’s initial bid,

18Table 11 presented in Appendix A reports the values used in the experiment.
19Using an ascending clock procedure whereby the price of an item increases in small fixed increments

has been a standard way to implement an English auction in the laboratory since Kagel, Harstad and Levin
[26].

20In the Binary treatment, however, only two options, 0 and 20, were given for the initial bid. No such
stage existed in the No-jump treatment.
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he/she was asked to click the continue button to proceed to Stage 2.

In the second stage, a price clock was presented on every bidder’s decision screen

that had three pieces of information: the (1) initial price, (2) current price, and (3) bid-

der’s private value. The price clock started with the initial price determined in the ini-

tial bidding stage. The current price was displayed at the center of the clock, and every

two seconds, the current price increased by 1 unit. The bidder’s private value is high-

lighted in the clock in blue. A button labeled “Not Interested Anymore” was located

under the price clock. When one of the individuals in each pair clicked the button, the

price clock stopped, and the auction ended. The individual who remained in the auction

was declared the winner and won the object at the price displayed on the clock. If no one

dropped out until the current price was equal to 60, the auction ended, and the final price

became 60. In this case, each individual had an equal chance of winning the auction. If

one did not win the auction, the earnings became the endowment, i.e., 60, and otherwise,

the earnings became the endowment plus the value minus the final price. At the end of

each round, information feedback was provided, such as one’s value, his/her opponent’s

value, the initial bid, his/her opponent’s initial bid, the final price, the auction outcome

and the final earnings.

At the end of each session, we elicited the risk attitude of each individual using two

rounds of decision tasks according to Table 12 in Appendix A. Note that when subjects

made decisions in the main auction game, we did not inform them that they would have

additional tasks. Each decision task involved twelve rows, each presenting a decision

problem that asks to choose between a simple lottery (Option A) and a certain outcome

$Y (Option B). The simple lottery had two possible outcomes $(Y + h) and $(Y ´ h), and

the probability assigned to the larger payoff monotonically increased as the row number

increased. The decision problem in Row 4 in each task had a certain outcome that was

exactly the certainty equivalent of the uncertain outcome such that a risk-neutral agent

should be indifferent between the two options. The two rounds of decision tasks differed

in terms of stake size: Y = 10 in the first task and Y = 30 in the second task, while h = 4

in both tasks.

We first identify individuals’ risk attitudes based on the switching points in the two

decision tasks. We classify a subject as risk averse (loving) if his/her switching points
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in both tasks were weakly above (below) Row 4 with at least one of them strictly above

(below) Row 4. If the switching points in both tasks were exactly Row 4, we classify the

subject as risk neutral. A total of 81.4% of subjects’ risk attitudes are identified, while

the rest (18.6%) are unidentified due to multiple switching points, at least in task, reverse

switching (switching from Option A to Option B), or inconsistent risk attitudes across two

rounds. Among the identified subjects, approximately 79% are classified as risk averse,

while risk neutral and loving each represent slightly above 10%.

We further classify a subject as CARA, IARA, and DARA if his/her switching point

in the task with a larger stake is the same, strictly higher, and strictly lower than the

switching point in the task with a smaller stake; 86.4% of subjects’ absolute risk aversions

are identified.21 Among the identified subjects, slightly more than 50% are classified as

CARA, and approximately 28% are classified as IARA. Figure 7 and Table 13 in Appendix

A report elicited risk attitudes at the aggregate level and the individual level, respectively.

We randomly selected one round of auctions for the real payment. A subject was

paid the amount of tokens (1 token = 1 HKD) he or she earned in the selected round of

the auction game and from the tasks for the risk attitude elicitation plus an HKD 30 show-

up fee. Subjects earned on average HKD 140 (« USD 18); the range was from HKD 126 to

HKD 175.22

4 Experimental Findings

4.1 Bidding Behavior

We begin this section by drawing the reader’s attention to Figures 1 and 2 below, which

present subjects’ bidding behavior in the Baseline and Binary treatments, respectively.

Both figures contain four panels, with each panel referencing a different matching group.

21We can identify an individual’s absolute risk aversion as long as a subject has a single switching point
in each round regardless of whether the risk attitudes are consistent across the two rounds. We thus have
a higher percentage of successful identification (86.4%) for absolute risk aversion than for risk attitude
(81.4%).

22Under the Hong Kong currency board system, the HK dollar is pegged to the US dollar at the rate of 1
USD = 7.8 HKD.
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For the sake of presentational convenience, we created the notion of pairs for each match-

ing group as a collection of two-person pairs, one from each round, that were assigned

to have particular (predetermined) realizations of values. For example, Pair 1 consisted

of a pair with realized values 5 and 25 in Round 1, 44 and 12 in Round 2, ..., 41 and 30

in Round 10, and was so in every matching group in every session and treatment. Thus,

two individuals in a given pair were not always the same across rounds.23 The horizontal

axis of each panel consists of five blocks, each of which refers to one pair. On each block

is the period ranging from 1 to 10. On the vertical axis are three different prices for a

given pair in a given period. The three prices shown in the figures are the initial price

(IP, represented by the dark bar), final price (FP, represented by the thin dashed line), and

hypothetical price (HP, represented by the solid line), where the initial price is the maxi-

mum of the two initial bids in each pair, the final price is the price at which the price clock

stops, and the hypothetical price is the second-highest value in each pair.24 Note that the

solid hypothetical price lines in all panels in both figures look the same because we used

a common value distribution and presented them according to the same order based on

the notion of pairs for all sessions and treatments.

Four features of the data clearly emerge from both treatments. First, jump bidding is

prevalent: 85.5% of the observations in the Baseline treatment and 28% of the observations

in the Binary treatment had a strictly positive initial price.25 Second, in most cases –

72% in the Baseline treatment and 66% in the Binary treatment – the final price is in the

neighborhood (˘1) of the hypothetical price. Third, there are a few instances in which

overbidding is observed; i.e., the final price is strictly higher than the hypothetical price.

Fourth, there are a few instances in which underbidding is observed; i.e., the final price

is strictly lower than the hypothetical price. Table 2 provides a summary of the bidding

behavior in all three treatments.

When reporting our data, we distinguish three scenarios for both overbidding and

23By doing so, we can always keep the order of the presentation of results constant across all different
matching groups, sessions, and treatments based on the predetermined realized values.

24We call the second-highest value in each pair the hypothetical price because if everyone hypothetically
follows the weakly dominant strategy of quitting when the price reaches one’s value, then the final price
should be the second-highest value in the pair.

25Focusing on jump bidding significantly larger than 0, we report that 32% of subjects in the Baseline
treatment made an initial bid weakly greater than 5.
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underbidding and categorize them into 6 subgroups as follows. First, we say that over-

bidding (underbidding) is observed if the final price is strictly higher (lower) than the

hypothetical price +1 (´1).26 Second, we say that overbidding (underbidding) is driven

directly by jump bidding if one bidder jumps and the other quit immediately, indirectly

driven by jump bidding if one bidder jumps and the other does not quit immediately, and

not driven by jump bidding if no one jumps. Note that overbidding driven directly by

jump bidding is consistent with the behavioral predictions of our theory.

Table 2: Bidding Frequencies

Baseline Binary No-jump

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean 1 2 3 4 5 6 Mean

FP= HP (˘1) 44 39 31 34 37 35 26 43 28 33 24 33 24 36 26 34 29.5

OB
JB Direct 2 2 2 2 2 5 5 4 1 3.75 N/A

JB Indirect 2 3 10 1 4 2 6 0 5 3.25
No-jump 0 1 5 7 3.25 5 12 2 14 8.25 21 12 25 13 24 16 18.5

UB JB Direct 2 1 1 2 2.5 2 0 0 0 0.5 N/A
JB Indirect 0 2 1 4 1.75 1 0 0 0 0.25
No-jump 0 2 0 0 0.5 0 1 1 2 1 5 5 1 1 0 0 2

Total 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Note: FP and HP refer to the final price and hypothetical price, respectively. Similarly, OB, UB, and JB refer to overbidding,
underbidding, and jump bidding, respectively. The same abbreviations apply to all other figures and tables hereafter.

By carefully observing Figures 1 and 2, all three types of overbidding and underbid-

ding specified above are observed. First, there are a few instances in which over/underbidding

has been directly driven by jump bidding; i.e., the initial price is the same as the final

price, which is strictly positive (e.g., Round 9 in Pair 1 of Matching Group 3, Baseline for

overbidding/Round 1 in Pair 2 of Matching Group 3, Baseline for underbidding). In these

observations, one of the bidders decides to quit immediately after observing the jump bid

made by his/her opponent. Second, over/underbidding is sometimes indirectly driven by

jump bidding; i.e., the initial price is positive, but the final price is strictly higher than the

initial price (e.g., Round 3 in Pair 3 of Matching Group 2, Baseline for overbidding/Round

3 in Pair 2 of Matching Group 2, Baseline for underbidding). Third, over/underbidding

occurs even when the initial price is 0 (e.g., Round 1 in Pair 2 of Matching Group 1, Binary

26We define overbidding (underbidding) as the case in which the final price is strictly higher (lower)
than the hypothetical price +1 (´1). This definition allows a small degree of mistakes in bidding behavior.
All qualitative findings in this paper will be preserved even when we allow no degree or a larger degree
(˘2 and ˘3) of mistakes.
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for overbidding/Round 5 in Pair 2 of Matching Group 1, Binary for underbidding). Ta-

ble 2 reports the frequencies of different types of overbidding and underbidding for each

treatment. In both the Baseline and Binary treatments, overbidding was more frequently

observed than underbidding.

The bidding behaviors in the Baseline and Binary treatments are qualitatively the

same. The Mann-Whitney test (MW test, hereafter) reveals that we cannot reject the null

hypothesis that the frequencies of overbidding not driven by jump bidding in the two

treatments are not significantly different (two-sided, p-value = .2454).27 The same tests

for all other pairwise comparisons (for the frequencies of overbidding directly driven by

jump bidding, those indirectly driven by jump bidding, the frequencies of underbidding

directly driven by jump bidding, those indirectly driven by jump bidding, and those not

driven by jump bidding) generate qualitatively the same result with p-values ranging

between .1635 and 1.28

In the Baseline treatment, the frequencies of overbidding directly induced by jump

bidding are not significantly different from those of underbidding directly induced by

jump bidding (paired Wilcoxon test, Wilcoxon test hereafter, p-values ą .3458). How-

ever, in the Binary treatment, the frequencies of overbidding induced both directly and

indirectly by jump bidding are marginally higher than those of underbidding induced by

jump bidding (Wilcoxon test, p-values = .0975).

Result 1. In the Baseline and Binary treatments, jump bidding induces not only overbidding but

also underbidding. In the Binary treatment, the frequency of overbidding induced both directly

and indirectly by jump bidding is higher than that of underbidding. The difference is marginally

significant.

We now present data from the No-jump treatment in Figure 3. The figure contains

six panels, with each panel referencing a different matching group. There is no dark bar

for the initial price because a positive initial bid is not allowed in the treatment. One of

the main features emerging from the data is that a substantial degree of overbidding is

observed (111 out of 300 observations), while some but very little underbidding is also

27This is due to the high variance in both frequencies, although the average frequency of 8.25 from the
Binary treatment seems to be much larger than the 3.25 from the Baseline treatment.

28All nonparametric test results reported in the paper are from two-sided tests unless stated otherwise.
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observed (12 out of 300).29 Table 2 also provides a summary of the bidding behavior in

the No-jump treatment.

It is evident that overbidding is more prevalent in the No-jump treatment than in

the other two treatments.30 The MW test reveals that the frequency of overbidding in the

No-jump treatment is significantly higher than the frequency of overbidding not driven

by jump bidding from the Baseline treatment (p-value = .0095) and from the Binary treat-

ment (p-value = .0543). However, there is no significant difference (p ą 0.3027; for all

MW tests for pairwise comparisons) in the three treatments in terms of the frequency of

underbidding not driven by jump bidding.

Result 2. In all three treatments, a substantial degree of overbidding not driven by jump bidding

was observed. The observed frequency of overbidding in the No-jump treatment was significantly

higher than those in the other two treatments.

4.2 Revenue Analysis

Table 3 reports the result from a decomposition of the difference between the hypothetical

and the actual revenues. Specifically, we decompose the contribution of the difference into

six parts: overbidding directly/indirectly/not driven by jump bidding and underbidding

directly/indirectly/not driven by jump bidding. The hypothetical revenue is simply the

sum of the hypothetical prices from all pairs and all rounds.

A few findings emerge from the analysis of the Baseline and Binary treatments. First,

the actual revenues are higher than the hypothetical revenues, although the difference is

29The overbidding observed in the first two sessions (four matching groups) of the No-jump treatment
was an unexpected surprise to us, and we held an additional session (two matching groups) for a robustness
check.

30It is possible that the higher frequency of overbidding observed in the No-jump treatment than in the
other two treatments may be a consequence of the simplicity of the game the subjects played in the No-jump
treatment. Without the initial-bidding stage, there is no concern about information transmission, and the
remaining game has a truthfully revealing weakly dominant strategy equilibrium. The equilibrium is quite
intuitive and easy to understand but does not allow room for strategic interaction. As a result, subjects
may have easily become bored, and/or those who have a lower value (and realize that there is nothing
they can do to win) may feel a sense of injustice, which may provoke nonequilibrium behavior affected by
other-regarding preferences. Note, however, that it is not our primary concern to understand why we have
asymmetric overbidding outcomes. In the next section, we will instead propose a new experimental design
to control for overbidding.
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not statistically significant (Wilcoxon tests, p-values = .125 for both cases). Second, the

significant proportion of the revenue increase originates from the positive contributions

from overbidding directly and indirectly induced by jump bidding. Furthermore, there

is a nonnegligible amount of revenue increases from overbidding not driven by jump

bidding. Third, underbidding has a negative but minor (relative to overbidding) effect

on revenue. The actual revenues from the two treatments are statistically the same (MW

test, p-value = .4857).

The bottom panel of Table 3 shows that the effect of overbidding on revenue in the

No-jump treatment is positive and substantial. More important, the increased revenue as

a result of overbidding in the No-jump treatment is significantly larger than the increased

revenue as a result of overbidding not driven by jump bidding in the other two treat-

ments. Consequently, the MW test indicates that we cannot reject the null hypothesis

that the actual revenue from the No-jump treatment is the same as that from the Baseline

treatment (p-value = .4542) and that from the Binary treatment (p-value = 1).

Result 3. The actual revenue from the No-jump treatment is not different from the actual revenues

from the Baseline and Binary treatments.

On the one hand, the result from the revenue comparison already suggests that ex-

isting theory cannot explain our data because all existing papers predict that jump bid-

ding reduces the seller’s revenue.31 On the other hand, there is a possibility that the

revenue ranking may be misleading due to overbidding behavior, which may create het-

erogeneous effects on revenues across different treatments. Thus, it is necessary to more

carefully study overbidding behavior and determine whether we can isolate the effect of

jump bidding on sellers’ revenue from that of overbidding not driven by jump bidding.

31An alternative hypothesis would be that jump bidding is driven by bidders’ impatience (Isaac, Salmon
and Zillante [23]). However, our experimental result presented in the next section that there is substantial
amount of revenue increases from jump bidding, which has some signaling value, rejects this alternative
hypothesis.
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Table 3: Total Revenue Decomposition

Overbidding Underbidding

Baseline Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 1,163 +21 +11 +1 -3 -5 -3 1,185
Matching Group 2 1,163 +36 +26 +27 -1 -44 -3 1,204
Matching Group 3 1,163 +3 +236 +72 -4 -4 -1 1,465
Matching Group 4 1,163 +11 +4 +87 0 -25 -7 1,233

Mean 1,163 +17.75 +69.25 +46.75 -2 -19.5 -3.5 1,271.75

Overbidding Underbidding

Binary Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 1,163 +34 +65 +55 -32 -6 0 1,279
Matching Group 2 1,163 +51 +38 +95 -1 0 -7 1,339
Matching Group 3 1,163 +22 +33 +21 0 0 -22 1,217
Matching Group 4 1,163 +8 +68 +93 0 -1 -11 1,320

Mean 1,163 +28.75 +51 +66 -8.25 -1.75 -10 1,288.75

No-jump Hypothetical Overbidding Underbidding Actual

Matching Group 1 1,163 +109 -55 1,217
Matching Group 2 1,163 +69 -23 1,209
Matching Group 3 1,163 +173 -10 1,326
Matching Group 4 1,163 +110 -34 1,239
Matching Group 5 1,163 +188 0 1,351
Matching Group 6 1,163 +163 0 1,326

Mean 1,163 +135.34 -20.34 1,278

5 A New Experimental Design and Its Results

Our exit survey result indicates that overbidding not driven by jump bidding in our treat-

ments is mainly induced by spiteful motives.32 We thus design two new treatments,

Binary-II and No-jump-II, parallel to the Binary and No-jump treatments, with an addi-

tional experimental control. Two sessions for each treatment with 20 subjects for each

session were conducted. Recall that in our treatments, we randomly selected one round

(out of 10) to calculate the final payment for each subject. In the new design, which we

name the Amended Random Payment (ARP) design, we informed each individual whether

the current round is the payment round for his/her opponent (see Figure 4).33 Through-

out the auction, however, each individual never knew whether the current round was

his/her payment round. The purpose of the new design is to fully control for or discard

any kind of other-regarding preferences that may affect subjects’ bidding behavior.34 We

also carefully revised the experimental instructions, replacing any words that might pro-

voke a joy of winning and/or spitefulness (such as win/lose and opponent) with more
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Figure 4: Z-tree Screen Shot – Binary-II Treatment

neutral terms.

There are a few other possible approaches described in the literature to control

for other-regarding preferences. One can consider a longer time horizon, as in Kagel,

32Here are a few selected responses to the question “Suppose that your value is 10. Briefly describe your
behavior in the auction” in our exit survey.
“Wait until the price go[es] higher, maybe this is to prevent others [from] earn[ing] more. ”
“Since my value is quite small, I would want to have some risk. I should stay in the auction even if the
current value [price] exceed[s] my value. I would quit the auction when the current value [price] reaches
15. As 15 is still a small number, I would assume that the opponent has a value bigger than 15. But as I quit
after the current value [price] exceed[s] my value, the opponent is going to earn less. ”
“10 is small number, which has almost no chance of winning the auction, so what I am going to do is to
minimize my opponent’s gain. Usually, I will wait until the clock reaches about 18-20 and opt out of the
auction because in this case there is an over 80% chance that my opponent will have a larger value, so I will
bet he/she has a value not smaller than 25.”

33The current design of the ARP scheme applies only to the two-bidder setting. However, as suggested
by an anonymous referee, the ARP design can be easily extended to multibidder settings. For instance, with
more than two bidders, we can inform every bidder whether the current round is his/her most competitive
opponent’s payment round, as such an opponent is most likely to win the auction.

34Specifically, suppose that an individual’s utility consists of two terms as follows:

Ui = αi ¨ ui + βi ¨ vi (2)

where ui denotes the utility that comes from the material payoff and vi = f (u´i) denotes the utility coming
from other-regarding preferences. αi ą 0 and βi ą 0 measure the respective importance of the two terms.
Under the ARP design, if an individual i is informed that the current round is not the payment round of
his/her opponent, then βi = 0 such that Ui = ui.

26



Harstad, and Levin [26], or consider inviting more experienced subjects, as in Garratt,

Walker and Wooders [16]. One can also design a game such that a subject plays against a

fictitious player such as a robot with a particular strategy or against prior human players

(e.g., Cason and Sharma [7], Johnson, Camerer, Sen, and Rymon [24]). We believe that

our ARP method may have some advantages. First, it provides a way to eliminate other-

regarding preferences of human subjects without relying on a fictitious player. Second,

it allows us to make a direct comparison between data with and without the concerns of

other-regarding preferences for the same set of human subjects. Third, our method is very

simple to implement and can be applied to a broad range of games. Fourth, our method

is less restrictive with respect to practical concerns such as inviting human subjects who

satisfy certain conditions (e.g., experience) and keeping the length of a session reasonably

short.

5.1 Bidding Behavior

Figures 5 and 6 present the experimental data from the two treatments. Tables 4, 5 and 6

report summaries of bidding frequencies, data from the opponent’s payment rounds, and

data from the opponent’s nonpayment rounds, respectively. One noticeable difference

from the treatments in the previous sections is that overbidding is observed significantly

less frequently in the No-jump-II treatment than in the No-jump treatment (8.25 vs. 18.5,

MW test, p-value = .0139).

To understand the relationship between overbidding and the spite motive, it is use-

ful to focus on the data from the opponent’s payment rounds presented in Table 5. Two

features emerge from the data. First, a significant degree of overbidding was observed

in both treatments. For each matching group, there were 8 rounds in which a spite op-

portunity existed (i.e., when a subject with a lower value was informed that the current

round is the payment round of the opponent), and subjects indeed overbid frequently (on

average, 3.5 times in both the Binary-II and No-jump-II treatments). The same information

can be found in Figures 5 and 6, where the solid circles highlight the instances in which

the final price is strictly higher than the hypothetical price when the current round is the
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Table 4: Bidding Frequencies – All Data

Binary-II No-jump-II

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean

FP = HP (˘1) 27 36 26 26 28.75 (33) 31 42 41 31 36.25 (29.5)

OB
JB Direct 6 2 6 5 4.75 (3.75) N/A

JB Indirect 7 4 3 6 5 (3.25)
No-Jump 3 5 5 7 5 (8.25) 8 7 8 10 8.25 (18.5)

UB JB Direct 0 2 2 1 1.25 (0.5) N/A
JB Indirect 4 1 2 2 2.25 (0.25)
No-Jump 3 0 6 3 3 (1) 11 1 1 9 5.5 (2)

Total 50 50 50 50 50 50 50 50 50 50

Note: Numbers inside brackets are corresponding values from the Binary and No-jump treatments.

Table 5: Bidding Frequencies – Payment Rounds

Binary-II No-jump-II

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean

FP = HP (˘1) 4 6 4 4 4.5 4 8 5 3 5

OB JB Direct 1 0 2 0 0.75 N/A
Else 4 4 2 4 3.5 3 2 4 5 3.5

UB JB Direct 0 0 0 0 0 N/A
Else 1 0 2 2 1.25 3 0 1 2 1.5

Total 10 10 10 10 10 10 10 10 10 10

Table 6: Bidding Frequencies – Non-payment Rounds

Binary-II No-jump-II

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean

FP = HP (˘1) 23 30 22 22 24.25 27 34 36 28 31.25

OB
JB Direct 5 2 4 5 4 N/A

JB Indirect 5 2 1 5 3.25
Else 1 3 5 4 3.25 5 5 4 5 4.75

UB
JB Direct 0 2 2 1 1.25 N/A

JB Indirect 4 1 2 1 2
Else 2 0 4 2 2 8 1 0 7 4

Total 40 40 40 40 40 40 40 40 40 40

payment round of the opponent.35 Second, there is no significant difference in bidding

35In total, there are 18 and 17 solid circles in Figures 5 and 6, respectively, indicating that the average
frequency of overbidding induced by the spite motive is 4.5 and 4.25 in the two treatments. Four such ob-
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behavior conditional on the current round being the payment round of the opponent in

the two treatments. An MW test reveals that the frequency of overbidding not driven by

jump bidding in Binary-II is not significantly different from the frequency of overbidding

in the No-jump-II treatment (p-value = 1). Similarly, the frequency of underbidding not

driven by jump bidding in the Binary-II treatment is not significantly different from the

frequency of underbidding in the No-jump-II treatment (p-value = .8809). These observa-

tions suggest that our ARP design allows us to identify spite-driven overbidding and to

successfully separate it from jump-driven overbidding.

We now focus on the data from the opponent’s nonpayment rounds presented in

Table 6. Admittedly, overbidding and underbidding led by mistakes and misunderstand-

ings are still unavoidable.36 However, such over/underbidding behavior seems to be

well controlled, as no significant difference in the frequency of over/underbidding ex-

ists (MW test, p-value = .1354 for overbidding and = .7702 for underbidding) between

the two treatments. Hence, the only qualitative difference between the two treatments in

terms of the bidding behavior conditional on the current round being one of the nonpay-

ment rounds of the opponent is the presence/absence of the over/underbidding directly

and indirectly induced by jump bidding.37 The frequency of overbidding induced by

jump bidding is significantly higher than that of underbidding in the Binary-II treatment

(MW test, p-value = .0530).

Result 4. 1) In the Binary-II treatment, jump bidding induces not only overbidding but also

underbidding. Conditional on the current round being one of the non-payment rounds of the op-

ponent, 2) the frequency of overbidding induced both directly and indirectly by jump bidding is

higher than that of underbidding in the Binary-II treatment, and 3) a non-negligible degree of over-

bidding not driven by jump bidding is observed in both the Binary-II and No-jump-II treatments,

servations in the Binary-II treatment and 3 in the No-jump-II treatment have a final price just one unit higher
than the hypothetical price and thus are not included in the overbidding category so that the reported
average frequencies in Table 5 turn out to be 3.5 for both treatments.

36Our exit survey result reveals that overbidding was committed by mistake or by misunderstanding by
subjects who believed that they could still spite their opponent even in the nonpayment round. Regarding
underbidding, there were three individuals who reported that they gave up (and bid 0) whenever their
value was smaller than a certain level.

37The jump-bidding equilibrium
(
σ˚1 , σ˚2

)
with the following slight modification predicts the observed

overbidding indirectly induced by jump bidding well: First, high-value bidders (vi ě v˚) jump to k(v˚)´ δ
with δ ą 0; low-value bidders (vi ă v˚) do not jump. Second, all bidders remain after observing the jump
k(v˚)´ δ. Third, low-value bidders quit at price k(v˚); high-value bidders remain after price k(v˚). Thus,
when vi P [0, k(v˚)), the overbidding indirectly induced by jump bidding is expected.
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with no significant difference across the treatments.

5.2 Revenue Analysis

Table 7: Total Revenue Decomposition – All Data

Overbidding Underbidding

Binary-II Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 1,163 +48 +70 +31 -1 -16 -24 1,271

Matching Group 2 1,163 +27 +60 +40 0 -25 -12 1,253

Matching Group 3 1,163 +54 +43 +32 0 -33 -39 1,220

Matching Group 4 1,163 +52 +83 +34 0 -25 -12 1,306

Mean 1,163 +45.25 +64 +34.25 -0.25 -24.75 -21.75 1,262.5

No-jump-II Hypothetical Overbidding Underbidding Actual

Matching Group 1 1,163 +48 -151 1,060

Matching Group 2 1,163 +99 -25 1,237

Matching Group 3 1,163 +69 -4 1,228

Matching Group 4 1,163 +85 -90 1,158

Mean 1,163 +75.25 -67.5 1,170.75

Tables 7 and 8 report the total revenue decomposition result based on all data and

based on the data from the opponent’s nonpayment rounds, respectively. Table 7 shows

that jump bidding contributes significantly and positively to revenue. Consequently, the

actual revenue from the Binary-II treatment is larger than that from the No-jump-II treat-

ment, although the difference is not significant (MW test, p-value = .1142). The magni-

tude of the revenue increase induced by overbidding is larger in the No-jump-II treatment

than in the Binary-II treatment (MW test, p-value = .0142). Moreover, the magnitude of

the revenue decrease induced by underbidding in the No-jump-II treatment is not signifi-

cantly different from that in the Binary-II treatment (MW test, p-value = .5577).

The result from the nonpayment round data presented in Table 8 confirms and rein-

forces the main finding from all the data. First, the Wilcoxon test reveals that the actual

revenue from the Binary-II treatment is higher than the hypothetical revenue, albeit only

insignificantly (p-value = 0.125). Second, the MW test shows that the actual revenue
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Table 8: Total Revenue Decomposition – Non-payment Rounds

Overbidding Underbidding

Binary-II Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 929 +35 +41 +9 0 -16 -7 991

Matching Group 2 929 +27 +48 +23 0 -25 -12 990

Matching Group 3 926 +26 +20 +32 0 -33 -25 946

Matching Group 4 926 +52 +63 +10 0 -6 -13 1,032

Mean 927.5 +35 +43 +18.5 0 -20 -14.25 989.75

No-jump-II Hypothetical Overbidding Underbidding Actual

Matching Group 1 926 +21 -86 861

Matching Group 2 926 +48 -25 949

Matching Group 3 926 +23 0 949

Matching Group 4 926 +38 -51 913

Mean 926 +32.5 -40.5 918

Note: Because of a programming mistake in the first session of Binary-II treatment, we had the payment round of one subject

in each matching group different from that of other sessions. As a result, the hypothetical revenue in matching groups 1 and

2 of the Binary-II treatment is 929, slightly higher than the 926 in the other sessions.

from the Binary-II treatment is higher than the actual revenue from the No-jump-II treat-

ment (p-value = .110), again with a marginal significance. However, we cannot reject the

null hypothesis that the actual revenue from the No-jump-II treatment is not significantly

different from the hypothetical revenue (Wilcoxon test, p-value = 1.000).

Result 5. In our ARP design, 1) the actual revenue from the No-jump-II treatment is not different

from the hypothetical revenue, and 2) the actual revenue from the Binary-II treatment is (only

insignificantly) higher than the hypothetical revenue and the actual revenue from the No-jump-II

treatment.

The statistical insignificance we have in the above result may be due to the small

sample size (4 matching groups). We thus conduct an additional regression analysis us-

ing the 1st round individual-level observations to understand the revenue effect of jump

bidding.38 We regress the final price paid by the winner on the following variables: vi, a

variable for bidder i’s value; ItTreatmentu, an indicator variable that takes value 1 in the

38We thank the anonymous referee for making this useful suggestion.
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Jump-II treatment; ItOpponenPaymentRoundu, an indicator variable that takes value 1 if it

is the opponent’s payment round; ItInitialBidu, an indicator variable that takes value 1if

the jump bid of 20 is chosen as an initial bid; ItOpponentInitialBidu, an indicator variable

that takes value 1 if the jump bid of 20 is chosen by the opponent. For every indicator

variable, we slightly abuse notation and use the name inside the indicator function to

denote the variable itself.

Table 9: Linear Regression Model with 1st Round Data

(1) (2)

Constant .2.9893 3.7982
(2.8848) (2.7391)

Treatment .3500 ´4.6307
(2.6841) (2.9128)

vi (Value) .5130˚˚˚ .4795˚˚˚

(.0821) (.0795)
Opponent’s Payment Round 7.0208 6.9027

(4.7911) (4.4797)
Initial Bid ´ .4584

´ (.2386)
Opponent Initial Bid ´ .7868˚˚˚

´ (.2292)

No. of Observations 80 80

Note: Standard errors are in parentheses. *** indicates significance at the 0.1%
level, ** significance at the 1% level, and * significance at the 5% level.

Table 9 reports the regression result. The column (1) shows that the final price

(equivalently, the revenue) is only insignificantly higher in the Jump-II treatment than

in the No-Jump-II treatment when controlling for the value and the opponent’s payment

round. With two more regressors, the column (2) further indicates that the observed rev-

enue increase originates from the jump-bid made by an individual and that made by the

opponent while only the latter is significant. This result is straightforward to interpret.

On one hand, one’s own jump-biding crucially depends on the value the individual has.

As a result, when controlling for the value, the effect of individual’s own jump-bidding

on the revenue is insignificant. On the other hand, the significantly positive effect of the

opponent’s jump-bidding implies that one needs to pay a higher final price when the

opponent jump-bids comparing to the case in which the opponent does not while fixing
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the value and his own jump-bidding constant. This result essentially answers the ques-

tion we raised in the introduction. It provides a rationale for why jump bidding is not

prohibited in many real auctions.

6 Determinants of Jump bidding

In this section, we investigate major determinants of jump bidding. Our theory suggests

that jump bidding is a device for a bidder to signal his/her high value. Moreover, Propo-

sition 2 presents a few sufficient conditions for the jump-bidding equilibrium regarding

players’ risk attitudes. We thus regress ItJi = 1u, an indicator variable that takes value 1

if bidder i jumps and zero otherwise, on the following variables: vi, a variable for bidder

i’s value; ItBaselineu, an indicator variable that takes value 1 in the Baseline treatment;

ItARPu, an indicator variable that takes value 1 in the Binary-II treatment; ItAversionu,

an indicator variable that takes value 1if an individual’s identified risk attitude is aver-

sion; ItNeutralu, an indicator variable that takes value 1 if an individual’s identified risk

attitude is neutral; ItLovingu, an indicator variable that takes value 1 if an individual’s

identified risk attitude is loving; ItIARAu, an indicator variable that takes value 1 if an in-

dividual’s identified absolute-risk attitude is IARA; ItCARAu, an indicator variable that

takes value 1 if an individual’s identified absolute-risk attitude is CARA; ItDARAu, an

indicator variable that takes value 1 if an individual’s identified absolute-risk attitude is

DARA; ItFemaleu, an indicator variable that takes value 1 if an individual is a female;

and t, a variable for the period. For every indicator variable, we slightly abuse notation

and use the name inside the indicator function to denote the variable itself.

Table 10 presents the results from the regression analysis using the data from our

three treatments with jump bidding (Baseline, Binary, and Binary-II). The first column re-

ports the results from the probit regression. The second and third columns report the

results from the logit and linear regression models, respectively. Regardless of the regres-

sion specification considered, we have consistent results as follows. First, the coefficient

for the bidder’s value vi is positive and significant, which confirms that jump bidding

is a credible signaling device. Second, the coefficient for the Baseline treatment is neg-

ative and significant. This indicates that jump bidding is more prevalent in the Binary
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Table 10: Probit, Logit, and Linear Probability Models

(1) (2) (3)

Constant .7238˚˚˚ 1.2047˚˚˚ .7296˚˚˚

(.013) (.3231) (.0506)
vi (Value) .0140˚˚˚ .0241˚˚˚ 0.0036˚˚˚

(.0026) (.0045) (.0007)
Baseline ´1.6942˚˚˚ ´2.8544˚˚˚ ´0.5396˚˚˚

(.1094) (0.1964) (.0280)
ARP .2068˚ .3399˚ .0463˚

(.1105) (.1990) (.0281)
Aversion ´.2479 ´.4022 ´.0699

(.1974) (.3312) (.0528)
Neutral .3602 .6931 .0969

(.2606) (.4420) (.0700)
Loving ´.3618 ´.5889 ´.0883

(.2493) (.4212) (.0654)
IARA .0703 .0588 .0187

(.2419) (.4097) (.0650)
CARA ´.1618 ´.3383 ´.0400

(.2445) (.4148) (.0653)
DARA .3344 .5495 .0911

(.2186) (.3675) (.0584)
t (Period) ´.1025˚˚˚ ´.1756˚˚˚ ´.0264˚˚˚

(.0152) (.0270) (.0040)
Female .1464 .2809˚ .0436˚

(.0912) (.1594) (.0243)

No. of Observations 1,200 1,200 1,200

Note: Standard errors are in parentheses. *** indicates significance at the 0.1% level, **
significance at the 1% level, and * significance at the 5% level.

treatment than in the Baseline treatment. This result reflects the fact that there is a unique

jump-bidding equilibrium in the Binary treatment. Third, the coefficient for ARP is pos-

itive and marginally significant. This indicates that our ARP design successfully isolates

other confounding factors, including other-regarding preferences. Fourth, the coefficient

for period is negative and significant. Subjects seem to learn not to jump when gaining

more experience. Fifth, female students are more likely to jump. Finally, the elicited risk

attitudes are all insignificant. This indicates that the conditions regarding risk attitudes

provided by Proposition 2 are sufficient but not necessary conditions for the existence of
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a jump-bidding equilibrium. Moreover, it also reveals that measurement error may be

serious in the elicitation of risk attitudes.

7 Conclusion

Jump bidding is frequently observed in real-life auctions. Although several papers (e.g.,

Avery [2] and Daniel and Hirshleifer [13]) have provided convincing analyses on this

phenomenon, previous works suggest that sellers’ revenue decreases when jump bidding

occurs, a finding in sharp contrast to the fact that jump bidding is allowed in real-life

auctions (e.g., Sotheby’s auctions and FCC spectrum auctions). In this paper, our auction

experiments demonstrate that sellers’ revenue increases when jump bidding occurs. The

result is qualitatively consistent with the theory of jump bidding we proposed.

Finally, because we consider different settings than other researchers, we wish to

emphasize that our results do not imply that the previous papers are incorrect.39 Rather,

a complete picture of jump bidding has yet to be seen. Thus, this paper complements

previous studies by using experiments and a particular theory to identify the positive

revenue effect of jump bidding.

39For example, we adopt the IPV setup, whereas Avery [2] adopts the common-value setup; we consider
risk-averse bidders, whereas Daniel and Hirshleifer [13] and Avery [2] consider risk-neutral bidders.
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Appendix

A Figures and Tables

Table 11: Values Used in the Experiment

Subject Round 1 2 3 4 5 6 7 8 9 10

1
Value 5 24 37 44 55 18 44 22 4 11
Pair 1 4 2 3 5 1 5 3 4 2

2
Value 47 44 39 43 52 12 41 45 6 24
Pair 4 1 5 5 2 3 4 4 1 4

3
Value 25 36 27 29 6 32 60 58 59 16
Pair 1 2 1 1 3 5 1 5 2 3

4
Value 7 36 58 17 51 20 14 27 15 13
Pair 5 5 4 1 3 2 4 2 5 3

5
Value 34 36 46 42 21 40 47 11 57 41
Pair 2 3 2 2 1 3 3 3 2 1

6
Value 49 53 43 48 23 6 3 21 29 11
Pair 5 2 5 3 4 1 2 2 5 4

7
Value 6 12 27 27 31 41 41 49 47 29
Pair 3 1 4 2 1 5 1 1 3 2

8
Value 9 48 39 60 53 22 44 58 59 23
Pair 3 5 3 5 2 4 2 1 3 5

9
Value 11 7 14 21 55 4 34 22 19 29
Pair 2 4 3 4 5 2 5 4 1 5

10
Value 45 19 50 60 15 7 14 47 43 30
Pair 4 3 1 4 4 4 3 5 4 1

Table 12: Eliciting Risk Attitudes

Row Option A Option BNo. Outcome A1 = $Y + h Outcome A2 = $Y´ h
1 Prob 35/100 Prob 65/100

Certain Outcome $Y

2 Prob 40/100 Prob 60/100
3 Prob 45/100 Prob 55/100
4 Prob 50/100 Prob 50/100
5 Prob 55/100 Prob 45/100
6 Prob 60/100 Prob 40/100
7 Prob 65/100 Prob 35/100
8 Prob 70/100 Prob 30/100
9 Prob 75/100 Prob 25/100

10 Prob 80/100 Prob 20/100
11 Prob 85/100 Prob 15/100
12 Prob 90/100 Prob 10/100
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Figure 7: Average Frequency of Safe Choices (Option B)
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Table 13: Elicited Risk Attitudes - Individual Level

Risk Attitude Absolute Risk Aversion
Aversion Neutral Loving Unidentified Increasing Constant Decreasing Unidentified

Baseline Session 1 10 1 3 6 4 6 7 3
Session 2 16 1 1 2 4 11 3 1

Binary Session 1 12 2 3 3 5 8 6 1
Session 2 14 2 0 4 3 9 4 4

No-jump
Session 1 14 2 1 3 5 9 3 3
Session 2 14 2 1 3 2 12 4 2
Session 3 11 3 3 3 4 6 7 3

Binary-II Session 1 16 2 0 2 4 10 5 1
Session 2 13 1 1 5 5 6 5 4

No-jump-II Session 1 9 2 4 5 2 11 4 3
Session 2 12 2 1 5 3 8 5 4

Total 141 (64.1%) 20 (9.1%) 18 (8.2%) 41 (18.6%) 41 (18.6%) 96 (43.6%) 53 (24.1%) 30 (13.6%)

B Proofs

Proof of Proposition 2

By following (σ˚1 , σ˚2 ), the high types (i.e., vi, v´i ě v˚) jump to k(v˚) in stage 1, and the

low types (i.e., vi, v´i ă v˚) do not jump. I.e., bidders use the jump bid k(v˚) to signal

their high values. In the case that β´i = k(v˚) and vi ă v˚, bidder i infers that v´i ě v˚

and expects no chance to win, and hence bidder i quits immediately. For all other cases,

bidder i follows the weakly dominant strategy bi (βi, β´i, vi) = max tβi, β´i, viu in the

clock auction in stage 2. Thus, (σ˚1 , σ˚2 ) is a PBE if and only if the bidders’ signalling

is credible, i.e., the high types prefer “jumping to k(v˚)” and the low types prefer “no
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jump.”40 Define

N (vi) :=
ż vi

0
u(vi ´ v´i)dF(v´i); (3)

J (vi) := F(v˚)u(vi ´ k(v˚)) +
ż maxtv˚, viu

v˚
u(vi ´ v´i)dF(v´i); (4)

where N (vi) and J (vi) are the expected utility of type vi for “no jump” and “jumping to

k(v˚),” respectively. We thus have the following lemma.

Lemma 1. (σ˚1 , σ˚2 ) is a PBE if and only if

J (vi)´ N (vi)

$

&

%

ď 0 if vi ă v˚;

ě 0 if vi ě v˚.

Proof of Proposition 2. Define

g (vi) := u(vi ´ k(v˚));

h (vi) := E
v´i„[0,v˚] with cdf

F(v´i)
F(v˚)

[u(vi ´ v´i)] =

ż v˚

0
u(vi ´ v´i)d

F(v´i)

F(v˚)
.

By (21) and (22), we have

J (vi)´ N (vi) =

$

&

%

F(v˚)ˆ [g(vi)´ h(vi)]´
şvi

v˚ u(vi ´ v´i)dF(v´i) if vi ă v˚;

F(v˚)ˆ [g(vi)´ h(vi)] if vi ě v˚,

which implies

J (vi)´ N (vi)

$

&

%

ď F(v˚)ˆ [g(vi)´ h(vi)] if vi ă v˚;

= F(v˚)ˆ [g(vi)´ h(vi)] if vi ě v˚,
(5)

because
şvi

v˚ u(vi ´ v´i)dF(v´i) ě 0 for every vi ă v˚.

40 According to σ˚´i, if bidder i jumps to any off-equilibrium price in stage 1, bidder ´i stays in the
auction in stage 2 until the price reaches ´i’s true value. As a result, jump-bidding is useless for bidder i
and he prefers no jump to any off-equilibrium jump in stage 1.
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The properties of IARA and CARA (see Matthews [1], p. 638) imply

IARA : g (vi) = h (vi) ùñ g1 (vi) ą h1 (vi) ; (6)

CARA : g (vi) = h (vi) ùñ g1 (vi) = h1 (vi) . (7)

Note that (26) implies g(¨) and h(¨) cross at most once. In particular, g(v˚) = h(v˚).

Hence,

given IARA : g (vi)´ h (vi)

$

’

’

&

’

’

%

ă 0, if vi ă v˚;

= 0, if vi = v˚;

ą 0, if vi ą v˚.

; (8)

given CARA : g (vi)´ h (vi) = 0, @vi P [0, 1] . (9)

(25), (28) and (9) imply

given IARA or CARA : J (vi)´ N (vi)

$

&

%

ď 0 if vi ă v˚;

ě 0 if vi ě v˚.

Therefore, (σ˚1 , σ˚2 ) is a PBE by Lemma 2.�

Proof of Theorem 1

There are three possible events: i) [vi ă v˚ ď v´i with i P t1, 2u], ii) [max tv1, v2u ă v˚]

and iii) [v˚ ď min tv1, v2u]. In event ii) or iii), the seller gets the same revenue in both

(σ˚1 , σ˚2 ) and (pσ1,pσ2). Conditional on event i), the expected revenues in (σ˚1 , σ˚2 ) and (pσ1,pσ2)

are k(v˚) and
şv˚

0 vid
F(vi)
F(v˚) , respectively. Given risk-averse bidders, u (¨) is strictly concave

and

u

[
v˚ ´

ż v˚

0
vid

F(vi)

F(v˚)

]
= u

[
ż v˚

0
(v˚ ´ vi) d

F(vi)

F(v˚)

]
ą

[
ż v˚

0
u (v˚ ´ vi) d

F(vi)

F(v˚)

]
= u(v˚´ k(v˚)),

(10)

where the first equality follows from
şv˚

0 d F(vi)
F(v˚) = 1; the inequality follows from Jensen’s

inequality; the last equality follows from the definition of k(v˚) (see (20)). Thus, (29)
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implies

k(v˚) ą
ż v˚

0
vid

F(vi)

F(v˚)
.

That is, the seller has more expected revenue in (σ˚1 , σ˚2 ) than in (pσ1,pσ2).�

Proof of Theorem 2

First, since (σ˚1 , σ˚2 ) is a PBE, for every i, we have

Eui
(
vi|σ

˚
i , σ˚´i

)
ě Eui

(
vi|pσi, σ˚´i

)
, @vi P [0, 1] . (11)

Furthermore,
(
pσi, σ˚

´i
)

and (pσi,pσ´i) induce different outcomes if and only if vi ă v˚ ď v´i.

In particular, in such a case, bidder i loses in both
(
pσi, σ˚

´i
)

and (pσ1,pσ2), i.e., ui
(
vi|pσi, σ˚

´i
)
=

ui (vi|pσ1,pσ2) = 0 if vi ă v˚ ď v´i. Hence,

Eui
(
vi|pσi, σ˚´i

)
= Eui (vi|pσi,pσ´i) @vi P [0, 1] . (12)

(11) and (12) imply Eui
(
vi|σ

˚
i , σ˚

´i
)
ě Eui (vi|pσi,pσ´i) for every vi P [0, 1].�
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C Experimental Instructions: Baseline

INSTRUCTION

Welcome to the experiment. This experiment studies decision making between two individ-
uals. In the following hour or so, you will participate in 10 rounds of decision making. Please read
the instructions below carefully; the cash payment you will receive at the end of the experiment
depends on how you make your decisions according to these instructions. Communication of any
kinds with any other participants will not be allowed.

Your Group

There are 20 participants in today’s session. Prior to the first round, 20 people are equally
and anonymously divided into 2 classes. Your class will remain fixed throughout the experiment.
In each round you will be matched with another participant in your class to form a group of
two. Participants will be randomly rematched after each round to form new groups, and each
participant in your class have an equal chance to be matched with you. You will not be told the
identity of the participant you are matched with, nor will that participant be told your identity—
even after the end of the experiment.

Your Decision in Each Round

In your group, there are two individuals, yourself and your opponent. In each round and
for each individual, the computer randomly and independently selects Your Value from 1 to 60.
Each integer number between 1 and 60 has equal chance to be selected. At the beginning of each
round, you will be informed about your value. You will not be told the value of the participant
you are matched with, nor will that participant be told your value.

In each round, you are endowed with 60 tokens and are asked to make a bid to win an
auction that consists of the following two stages: Initial Bidding Stage (Stage 1) and Price Clock
Stage (Stag 2).

Stage 1: Initial Bidding Stage

You will be informed about your value and be asked to place your Initial Bid (see Figure
8). The initial bid can be any integer number between 0 and 60, inclusively. Once you input
your initial bid, you click the submit button. Note that the maximum of your initial bid and your
opponent’s initial bid will become the Initial Price in the next stage, which will be explained
further below.
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Figure 8: Stage 1 – Initial Bidding Stage

After you and your opponent click the submit button, you will be informed about the initial
price as you see in Figure 9(a). You will be asked to think for a number of seconds on what to do
next. The number of seconds you stay with the screen will be randomly determined between 5
seconds and 15 seconds. The waiting time is also independent upon your initial bids.

(a) Waiting Screen (b) Continue or Opt-out

Figure 9: Initial Price and Opt-out Decision

If you submit an initial bid strictly lower than your opponent’s initial bid (which is equal
to the initial price), you will be asked to decide whether to continue (by clicking the CONTINUE
button) or to opt out (by clicking the NOT INTERESTED ANYMORE button). (See Figure 9(b) for
the details). If you opt out, your opponent wins the auction with the initial price; if you continue,
you will proceed to Stage 2.

If you submit an initial bid higher than or equal to your opponent’s initial bid, you will be
asked to click the CONTINUE button to proceed to Stage 2.

Stage 2: Price Clock Stage
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Figure 10: Stage 2 – Price Clock Stage

Figure 10 demonstrates an example of your decision screen in Stage 2. On the left-hand side
of your screen, a Price Clock will be presented with three pieces of information on it: (1) Initial
Price, (2) Current Price, and (3) Your Value.

(1) Initial Price: The price clock starts with the Initial Price determined in the Initial Bid Stage
(= the maximum of the initial bids).

(2) Current Price: the current price is displayed at the center of the Clock (highlighted in Red
colour). In every two seconds, the clock goes and the current price increases in 1 unit.

(3) Your Value: Your value is highlighted in the clock with Blue colour.

Under the price clock, a button “NOT INTERESTED ANYMORE” is in place. Whenever
one of the individuals in your group clicks the button, the price clock stops and the auction ends.
The individual who stays in the auction is declared the winner, and pays the price showing on
the clock. Once an individual has opted out, he/she cannot re-enter. If no one drops out until
the current price becomes 60, the auction ends and the final price becomes 60. In this case, each
individual has equal chance to win the auction.

Your Earning in Each Round

• If you do not win the auction, your earning becomes your endowment 60.

• If you win the auction, your earning becomes
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Endowment + Your Value ´ Final Price.

For example, when you win the auction with your value 28 and the final price 19, your
earning in the round becomes 60 + 28´ 19 = 69.

Information Feedback

At the end of each round, you will be informed about Your Value, Your Opponent’s Value,
Your Initial Bid, Your Opponent’s Initial Bid, Final Price, Auction Outcome (win or lose) and Your
Earning.

Your Cash Payment

The experimenter randomly selects 1 round to calculate your cash payment. (So it is in your
best interest to take each round seriously). Your total cash payment at the end of the experiment
will be the number of tokens you earned in the selected round (translated into HKD with the
exchange rate of 1 Token = 1 HKD) plus a 30 HKD show-up fee.

Practice Rounds

To ensure your comprehension of the instructions, we will provide you with a practice
round. Once the practice round is over, the computer will tell you “The official rounds begin
now!”

Administration

Your decisions as well as your monetary payment will be kept confidential. Remember that

you have to make your decisions entirely on your own; please do not discuss your decisions with

any other participants. Upon finishing the experiment, you will receive your cash payment. You

will be asked to sign your name to acknowledge your receipt of the payment. You are then free

to leave. If you have any question, please raise your hand now. We will answer your question

individually.
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D Instructions for Eliciting Risk Attitudes

INSTRUCTION- Bonus I

Please read the instructions carefully and make decisions. In the table below, there are 12
decisions to be made. Each row presents each decision. In each row, you need to choose one of
two options, Option A and Option B.

• If you choose Option A, you will get either HKD 14 (Outcome A1) or HKD 6 (Outcome A2)
depending on the realization of X on the Orange Card.

• X will be randomly drawn in the range between [1,100] inclusively. Each integer number in
this range has an equal chance to be selected.

• If you choose Option B, you will get HKD 10 regardless of the realization of X on the Orange
Card.

• Please make your decisions for all 12 rows and click SUBMIT / OPEN THE CARD button.
Then, one row will be randomly selected and the selected row number will be presented on
the Green Card. Each row has equal chance to be selected.

• Your earning in this bonus round will be determined by your decision for the selected row
and the realization of X.

Please raise your hand if you have any questions.
Otherwise, please make your decision.

INSTRUCTION- Bonus II

In the table below, there are twelve decisions to be made. Each row presents each decision.
Everything is the same as before except the followings:

• If you choose Option A, you will get either HKD 34 (Outcome A1) or HKD 26 (Outcome A2)
depending on the realization of X on the Orange Card.

• If you choose Option B, you will get HKD 30 regardless of the realization of X on the Orange
Card.

Please raise your hand if you have any questions.
Otherwise, please make your decision.
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E Online Appendix: Equilibria with Two Rounds of Jump

We now define a class of 2-round-jump-bidding equilibria. In particular, we define below

([v˚, k˚(v˚)] , [v˚˚, k˚˚(v˚˚)]), where, in the first round, a bidder jumps to k˚(v˚) if and

only if her value is weakly higher than v˚, and in the second round, a bidder jumps to

k˚˚(v˚˚) if and only if her value is weakly higher than v˚˚.

We modify the model to accommodate 2-round jump bidding as follows. There is a

jump stage (i.e., stage 1), followed by a standard clock auction (i.e., stage 2). In stage 1,

each bidder i chooses
(

β1
i , β2

i
)
P [0, 1]ˆ

(
[0, 1][0,1]ˆ[0,1]

)
such that

β2
i

(
β1

1, β1
2

)
ě max

!

β1
1, β1

2

)

,

i.e., in the first round of jump bidding, bidder i jumps to β1
i , and upon observing

(
β1

1, β1
2
)
,

bidder i jumps to β2
i
(

β1
1, β1

2
)

in the second round of jump bidding. For notational ease,

we use β2
i to denote β2

i
(

β1
1, β1

2
)
, with the understanding that β2

i is the i’s 2nd-round jump

price (upon observing
(

β1
1, β1

2
)
).

In stage 2, an English auction with the starting price max
 

β2
1, β2

2
(

is conducted,

and each bidder i, upon observing the jump prices (i.e.,
[(

β1
1, β1

2
)

,
(

β2
1, β2

2
)]

), chooses the

price bi
([(

β1
1, β1

2
)

,
(

β2
1, β2

2
)]

, vi
)
ě max

 

β2
1, β2

2
(

to exit. For notational ease, we use bi to

denote bi
([(

β1
1, β1

2
)

,
(

β2
1, β2

2
)]

, vi
)
.

A winner gets utility u [vi ´ b´i], and his opponent (i.e., the loser) gets 0. Bidder i

wins if bi ą b´i, and a tie occurs if and only if bi = b´i. Whenever a tie occurs, we use a

fair coin to determine the winner.

Throughout the paper, we adopt the solution concept of perfect Bayesian equilib-

rium (PBE). As a benchmark, the usual no-jump equilibrium is defined as follows.

rσi :

 stage 1: β1
i = 0 and β2

i ” max
 

β1
1, β1

2, vi
(

;

stage 2: bi = max
 

β2
1, β2

2, vi
(

.


It is straightforward to see that (rσi,rσ´i) is an equilibrium.
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For any v P [0, 1], define k˚(v) P [0, 1] to be the unique number satisfying41

u(v´ k˚(v)) =
ż

v1P[0,v]
u(v´ v1)d

F(v1)
F(v)

. (13)

Fix any v˚ P (0, 1) and the corresponding k˚(v˚) as determined by (13). I.e., v˚ is bidders’

threshold value to jump and k˚(v) is the jump price. Suppose that both bidders’ values

are weakly higher than v˚, and we proceed to the second round of jump bidding. For any

v P [v˚, 1], define k˚˚(v) P [0, 1] to be the unique number satisfying42

u(v´ k˚˚(v)) =
ż

v1P[v˚,v]
u(v´ v1)d

F(v1)´ F(v˚)
F(v)´ F(v˚)

. (14)

Fix any v˚˚ P (0, 1) and the corresponding k˚˚(v˚˚) as determined by (14). I.e., v˚˚ is

bidders’ threshold value to jump and k˚˚(v˚˚) is the jump price.

Given ([v˚, k˚(v˚)] , [v˚˚, k˚˚(v˚˚)]) fixed abvoe, we construct a 2-round-jump-bidding

equilibrium (σ˚˚1 , σ˚˚2 ) as follows.

σ˚˚i :



stage 1:



β1
i =

$

&

%

k˚(v˚), if vi ě v˚;

0, if vi ă v˚.

β2
i
(

β1
i , β1

´i
)
=

$

’

’

’

’

’

&

’

’

’

’

’

%

k˚˚(v˚˚),
if
[
β1

i , β1
´i
]
= [k˚(v˚), k˚(v˚)]

and vi ě v˚˚;

max
 

β1
i , β1

´i, vi
(

, otherwise.



stage 2: bi (βi, β´i, vi) =

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

max
 

β2
i , β2

´i
(

,

if
[
β1

i , β1
´i
]
= [k˚(v˚), k˚(v˚)]

and β2
´i = k˚˚(v˚˚)

and vi ă v˚˚;

max
 

β2
i , β2

´i, vi
(

, otherwise.


41u(v´ y) is strictly decreasing in y. Since u(v´ 0) ě

ş

v1P[0,v] u(v´ v1)d F(v1)
F(v) ě u(v´ v), there exists a

unique k˚(v) for each v P [0, 1] such that equation (13) is satisfied.
42u(v´ y) is strictly decreasing in y. Since u(v´ v˚) ě

ş

v1P[v˚,v] u(v´ v1)d F(v1)´F(v˚)
F(v)´F(v˚) ě u(v´ v), there

exists a unique k˚˚(v) for each v P [v˚, 1] such that equation (14) is satisfied.
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With the same argument as in Lim and Xiong (2020), it is straightforward to show

the following results.

Proposition 3. (σ˚˚1 , σ˚˚2 ) is a PBE for risk-neutral, CARA and IARA bidders.

Theorem 3 (seller’s revenue). Given risk-averse bidders, the seller has more expected revenue
in (σ˚˚1 , σ˚˚2 ) than in (rσ1,rσ2).

F Online Appendix: Jump-bidding with Bidding Cost

In this note, we show how bidding cost (e.g., impatience) can be embedded into the jump-

bidding model in Lim and Xiong [2].

F.1 The Model

For simplicity, we consider a 2-bidder independent private value (hereafter, IPV) model.

One indivisible object is for sale, with bidders 1 and 2 having values v1, v2, respectively.

The values have i.i.d. distribution on the support [0, 1] with cdf F(¨). The two bidders are

expected utility maximizers with the same differentiable and strictly increasing Bernoulli

utility function u(¨). We normalize u(0) to 0. Let bidder ´i denote bidder i’s opponent.

We model the auction by a 2-stage game: the jump stage (i.e., stage 1), followed

by the bidding stage (i.e., stage 2). In stage 1, each bidder i chooses βi P [0, 1]; in

stage 2, a standard English auction with the starting price max tβi, β´iu is conducted,

and each bidder i chooses the price bi (βi, β´i, vi) ě max tβi, β´iu to exit. For instance,

”b´i (βi, β´i, v´i) = βi ą β´i” means that bidder ´i quits immediately after bidder i

jumps to βi. Bidder i wins the auction if and only if bi (βi, β´i, vi) ě b´i (βi, β´i, v´i).” If

bi (βi, β´i, vi) = b´i (βi, β´i, v´i), and let us fix any tie-breaking rule.

We say bidder i enters the auction if and only if βi ą 0 or bi (βi, β´i, vi) ą max tβi, β´iu.

Entering the auction is costly: a bidder incurs an additional cost of c ą 0 if only if he enters

the auction. Here, c models cognitive cost and/or psychological cost (e.g., impatience).

For example, if bi (βi, β´i, vi) ą b´i (βi, β´i, v´i) ą max tβi, β´iu, bidder i wins and his

utility is u [vi ´ b´i (βi, β´i, v´i)]´ c, and bidder ´i loses and his utility is ´c.
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Throughout the paper, we adopt the solution concept of perfect Bayesian equilib-

rium (PBE).

F.2 The No-Jump Equilibrium

Define e˚ to be unique number satisfying

F (e˚)ˆ u (e˚)´ c = 0, (15)

Define e˚˚ to be the unique number satisfying

u (e˚˚)´ c = 0. (16)

Note that e˚˚ ă e˚.

For simplicity, we assume bidders’ values follow the i.i.d. uniform distribution on

[0, 1], i.e.,

F (v) = v and f (v) = 1, @v P [0, 1] .

Moreover, we assume that c is sufficiently small so that

u1 (v) ą u (e˚) , @v P [0, 1] . (17)

The usual no-jump equilibrium has to be modified slightly. For instance, it is a

strictly dominant strategy for a type with a sufficiently low value (i.e., vi ă e˚˚) not to

enter the auction.

pσi :


stage 1: βi = 0;

stage 2: bi (βi, β´i, vi) =

$

’

’

&

’

’

%

0, if βi = β´i = 0 and vi ă e˚;

max tβi, β´iu , if βi = 0, β´i ą 0 and vi ă β´i + e˚˚;

max tβi, β´i, viu , otherwise.


Proposition 4 (no-jump PBE). Given risk-averse bidders, (pσ1,pσ2) is a PBE.

Proof of Proposition 4 First, on the equilibrium path, no one jumps in stage 1, and each
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bidder i enters the English auction in stage 2 if and only if vi ě e˚. Indeed, by (15), given

this strategy, each bidder i finds it (weakly) profitable to enter the auction if and only if

vi ě e˚.

Second, once bidder i enters the auction, the bidding cost is a sunk cost, and max tβi, β´i, viu

is the weakly dominant strategy in the English auction in stage 2.

Third, consider any off-equilibrium jump (in stage 1) faced by bidder i (i.e., β´i ą 0).

Suppose bidder i believes v´i = β´i, and bidder ´i would quit immediately in stage 2.

(16) implies that bidder i finds it (weakly) profitable to enter the auction if and only if

vi ě β´i + e˚˚.

Finally, we show bidder i does not find it profitable to deviate to any off-equilibrium

jump in stage 1. Suppose type vi is considering jumping to βi ą 0 in stage 1. It is without

loss of generality to assume

e˚ ď βi + e˚˚ ď vi. (18)

If vi ă βi + e˚˚, the maximal utility for jumping to βi is u (vi ´ βi)´ c ă u (e˚˚)´ c = 0.

Also, if βi + e˚˚ ď e˚, bidder i has to pay a higher price (i.e., βi ą 0) to drive out a smaller

proportion of opponents (i.e., v´i ď βi + e˚˚). In contrast, if bidder i follows pσi, he pays

0 to drive out a bigger proportion of opponents (i.e., v´i ď e˚). Therefore, jumping to βi

with βi + e˚˚ ď e˚ is strictly worse than pσi.

Moreover, for risk-averse bidders, u (¨) is concave. Then, βi + e˚˚ ď vi implies

u (vi ´ βi)´ u (vi ´ βi ´ e˚˚) ď u (βi + e˚˚ ´ βi)´ u (βi + e˚˚ ´ βi ´ e˚˚) = u (e˚˚) = c,

(19)

where, the first inequality follows concavity of u (¨), the first equality from u (0) = 0, and

the last equality from (16).

Define

ς (βi) := F (βi + e˚˚)ˆ u (vi ´ βi) +

ż vi

βi+e˚˚
u (vi ´ v´i) dF (v´i)´ c,

and ς (βi) is the expected utility for jumping to βi in stage 1. Then, by the uniform distri-
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bution, we have

ς1 (βi) = [u (vi ´ βi)´ u (vi ´ βi ´ e˚˚)]´ F (βi + e˚˚)ˆ u1 (vi ´ βi)

ď c´ F (βi + e˚˚)ˆ u1 (vi ´ βi)

ď c´ F (e˚)ˆ u1 (vi ´ βi)

ă c´ F (e˚)ˆ u (e˚) = 0,

where the first inequality follows from (19); the second inequality follows from (18); the

third inequality follows from (17); the last equality follows from (15).

That is, given e˚ ď βi + e˚˚ ď vi, if type vi has to make an off-equilibrium jump, the

best jump price is e˚ ´ e˚˚, i.e., βi + e˚˚ = e˚. As argued above, jumping to this price is

strictly worse than pσi.�

F.3 The Jump-Bidding Equilibrium

Fix any v˚ P (e˚, 1). Define k(v˚) P [0, 1] as the unique number satisfying

F (v˚)ˆ u [v˚ ´ k(v˚)] = F (e˚)ˆ u (v˚) +
ż v˚

e˚
u(v˚ ´ v)dF(v). (20)

We will construct a jump-bidding equilibrium (σ˚1 , σ˚2 ), in which v˚ is the threshold value

for the bidders to jump bid in stage 1 and k(v˚) is the jump price. That is, bidder i jumps

to k(v˚) in stage 1 if and only if vi ě v˚.

σ˚i :



stage 1: βi =

$

&

%

0, if vi ă v˚;

k(v˚), if vi ě v˚.

stage 2: bi (βi, β´i, vi) =

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0, if βi = β´i = 0 and vi ă e˚;

max tβi, β´iu , if βi = 0, β´i = k(v˚) and vi ă v˚;

max tβi, β´iu ,
if βi = 0, β´i R t0, k(v˚)u

and vi ă β´i + e˚˚;

max tβi, β´i, viu , otherwise.



In stage 1, bidder i uses the jump price k(v˚) to signal his high value, i.e., vi ě v˚.
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Suppose bidder i does not jump in stage 1, i.e., βi = 0. Then, bidder i does not enter

the auction in stage 2 in three cases: i) his value is too low, i.e., vi ă e˚; ii) β´i = k(v˚)

and vi ă v˚, i.e., β´i = k(v˚) implies his opponent has high value (i.e., v´i ě v˚), and

the low types of bidder i (i.e., vi ă v˚) expect no chance to win; iii) β´i R t0, k(v˚)u and

vi ă β´i + e˚˚, i.e., for any off-equilibrium jump β´i, type vi ă β´i + e˚˚ does not find it

profitable to enter the auction.

By the same argument in the proof of Proposition 1, bidder i does not find it prof-

itable to deviate to any off-equilibrium jump in stage 1, given bidder´i taking σ˚
´i. Hence,

(σ˚1 , σ˚2 ) is a PBE if and only if the bidders’ signalling in stage 1 is credible, i.e., the high

types prefer ”jumping to k(v˚)” and the low types prefer ”no jump.” Consider type

vi ě e˚, define

N (vi) := F (e˚)ˆ u (vi) +

ż vi

e˚
u(vi ´ v´i)dF(v´i)´ c. (21)

J (vi) := F (v˚)ˆ u(vi ´ k(v˚)) +
ż maxtvi, v˚u

v˚
u(vi ´ v´i)dF(v´i)´ c. (22)

N (vi) and J (vi) are the expected utility for ”no jump” and ”jumping to k(v˚),” respec-

tively. Note that N (v˚) = J (v˚), i.e., k(v˚) in (20) is chosen so that the threshold type v˚

is indifferent between no jump and jumping to k(v˚).

Lemma 2. Given risk-averse bidders, (σ˚1 , σ˚2 ) is a PBE if and only if

N (v) ě J (v) for every v P [e˚, v˚) and N (v) ď J (v) for every v P [v˚, 1].

Proposition 5. Given risk-averse bidders, (σ˚1 , σ˚2 ) is a PBE for CARA and IARA bidders.

Proof of Proposition 5. Define a new cdf as follows.

rF (v´i) =

$

&

%

F(e˚)
F(v˚) , if v´i P [0, e˚] ;
F(v´i)
F(v˚) , if v´i P (e˚, v˚].

(23)

By (20), we have

u [v˚ ´ k(v˚)] =
ż v˚

0
u(v˚ ´ v´i)drF (v´i) . (24)
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Define

g (vi) := u(vi ´ k(v˚));

h (vi) := Ev´i„[0,v˚] with cdf rF(¨) [u(vi ´ v´i)] =

ż v˚

0
u(vi ´ v´i)drF (v´i)

=
F (e˚)
F(v˚)

ˆ u (vi) +

ż vi

e˚
u(vi ´ v´i)d

F(v´i)

F(v˚)
.

By (21) and (22), we have

J (vi)´ N (vi) =

$

&

%

F(v˚)ˆ [g (vi)´ h (vi)]´
şvi

v˚ u(vi ´ v´i)dF(v´i), if vi P [e˚, v˚);

F(v˚)ˆ [g (vi)´ h (vi)] , if vi P [v˚, 1],

which implies

J (vi)´ N (vi)

$

&

%

ď F(v˚)ˆ [g (vi)´ h (vi)] , if vi P [e˚, v˚);

= F(v˚)ˆ [g (vi)´ h (vi)] , if vi P [v˚, 1],
(25)

because
şvi

v˚ u(vi ´ v´i)dF(v´i) ě 0 for every vi ă v˚.

The properties of IARA and CARA (see Matthews [1], p.638) imply

IARA : g (vi) = h (vi) ùñ g1 (vi) ą h1 (vi) ; (26)

CARA : g (vi) = h (vi) ùñ g1 (vi) = h1 (vi) . (27)

Note that (26) implies g(¨) and h(¨) cross at most once. In particular, g(v˚) = h(v˚).

Hence,

IARA : g (vi)´ h (vi)

$

’

’

&

’

’

%

ă 0, if vi ă v˚;

= 0, if vi = v˚;

ą 0, if vi ą v˚.

and CARA : g(vi)´ h(vi) = 0, @vi P [e˚, 1].

(28)

(25) and (28) imply

IARA & CARA : J (vi)´ N (vi)

$

&

%

ď 0 if vi P [e˚, v˚);

ě 0 if vi P [v˚, 1].
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Therefore, (σ˚1 , σ˚2 ) is a PBE by Lemma 2.�

Finally, the revenue effect remains.

Theorem 4. Given risk-averse bidders, the seller has more expected revenue in (σ˚1 , σ˚2 ) than in
(pσ1,pσ2).

Proof of Theorem 4. There are three events: i) [max tv1, v2u ă v˚], ii) [v˚ ď min tv1, v2u]

and iii) [min tv1, v2u ă v˚ ď max tv1, v2u] . In event of i) or ii), the seller gets the same

revenue in both (σ˚1 , σ˚2 ) and (pσ1,pσ2).

Conditional on event iii) [min tv1, v2u ă v˚ ď max tv1, v2u], the expected revenues

in (σ˚1 , σ˚2 ) and (pσ1,pσ2) are k(v˚) and
şv˚

0 vdrF (v), respectively, where rF (¨) is defined in

(23).

Given risk-averse bidders, u (¨) is strictly concave and

u

[
v˚ ´

ż v˚

0
vdrF (v)

]
= u

[
ż v˚

0
(v˚ ´ v) drF (v)

]
ą

ż v˚

0
u (v˚ ´ v) drF (v) = u(v˚ ´ k(v˚)),

(29)

where the first equality follows from
şv˚

0 drF (v) = 1; the inequality follows from Jensen’s

inequality; the last equality follows from (24). Thus, (29) implies

k(v˚) ą
ż v˚

0
vdrF (v) .

That is, the seller has more expected revenue in (σ˚1 , σ˚2 ) than in (pσ1,pσ2).�
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