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1 Introduction

Bayes’ rule provides a normative way of combining prior information with additional information that arises

from a new observation, and is regarded as the canonical model of information processing in economics and

other social sciences. In contrast, laboratory evidence suggests that how people perceive probability and

process information deviates systematically from what Bayes’ rule predicts (e.g., Kahneman and Tversky,

1972, 1973; Grether, 1978, 1992).1 In light of this evidence, many alternative modeling approaches have

been offered in behavioral economics (e.g., Epstein, 2006; Ortoleva, 2012; Zhao, 2016).2

In this paper, we investigate how non-Bayesian updating changes players’ strategic incentives, behav-

ioral predictions and, most importantly, welfare implications in the canonical environment of strategic

information transmission. Precisely, we explore a model in which a fully informed expert sends a cheap-

talk message to a decision maker who does not update her belief according to Bayes’ rule. We assume that

the decision maker is prone to a particular type of non-Bayesian updating bias, prior bias.

Prior bias, also known as conservatism or inertia, captures inferences drawn in favor of the current

belief, and it belongs under the umbrella of confirmation bias. Evidence of prior bias and its related

behaviors is prevalent not only in laboratory settings (e.g., Pitz, Downing, and Reinhold, 1967; Geller and

Pitz, 1968; Pitz, 1969), but also in real life situations that involve strategic communication (e.g., Weible,

Heikkila, deLeon, and Sabatier, 2012; Cairney, 2016; King, 2016).

To model prior bias, we adopt the following updating rule, as axiomatized in Epstein (2006). For each

signal m,

q(⋅∣m) = (1 − a)p(⋅∣m) + ap0(⋅) (1.1)

where p0(⋅) is the prior and p(⋅∣m) is the Bayesian update of p0.3 Hence, q(⋅∣m) captures prior-biased

inferences where a ∈ (0,1) is the degree of prior bias. The degree of prior bias reflects the mistrust a

decision maker has for the information source. In particular, a decision maker that follows (1.1) behaves

as if she thinks that with probability a, the source is not credible at all.

We incorporate the prior-biased belief updating presented in equation (1.1) into the model of Crawford

and Sobel (1982) and investigate how the presence of prior bias changes players’ strategic incentives in

a communication environment. Introducing prior bias creates the following key tradeoff: On one hand,

information transmission is undermined because the actions taken by the decision maker are distorted by

her prior bias (distortionary effect). On the other hand, knowing that the decision maker has prior bias,

the expert has an incentive to send more informative signals since the link between his message and the

decision maker’s response is weakened (strategic effect).

Consistent with the standard findings in the literature, all our equilibria are interval partitional. We

show that under a variant of the standard monotonicity condition, there exists a unique, most informative

equilibrium that ex ante Pareto dominates all other equilibria of the game. Specifically, when the conflict

1See Camerer (1995) and Rabin (1998) for surveys of the relevant papers in psychology.
2See Benjamin (2019) for a survey of non-Bayesian updating models.
3In Epstein (2006), the degree of prior bias may in principle depend on the message received. However, a constant a

allows us to obtain sharper comparative statics and welfare implications.
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of interest is small relative to the degree of prior bias, the most informative equilibrium induces infinitely

many actions. Such an equilibrium can be constructed with an appropriately chosen degree of prior bias

even in situations where no communication can be sustained in standard cheap talk.

We further show that if the degree of prior bias is within a certain range, the most informative equi-

librium of our game achieves social welfare that is strictly higher than the upper bound obtained with

the standard information-garbling devices of Blume, Board, and Kawamura (2007) and Goltsman, Hörner,

Pavlov, and Squintani (2009). Effectively, prior bias garbles the information in the head of the decision

maker, which relieves the conflict of interest between parties without actually contaminating the content

of the messages. In other words, prior bias is less costly than standard information-garbling devices.

To understand our welfare result more systematically, we decompose the welfare gain into the strategic

effect and the distortionary effect. Compared with the optimal noise equilibrium in Blume et al. (2007), the

most informative equilibrium in our model, with a properly chosen degree of prior bias, offers a significantly

higher strategic effect and a similar distortionary effect. We find that to achieve the same level of strategic

effect in a noise equilibrium, a much larger distortionary effect will have to be incurred because, in the

event that the message transmitted is a noise, the action taken by the decision maker is independent of

her optimal action given the equilibrium partition. This type of distortion does not exist in our model

since the message from the expert is always delivered verbatim. Thus, although the information will be

discounted in the same way, our decision maker always receives the right information to begin with.

We then incorporate prior bias into the optimal mediation problem à la Goltsman et al. (2009). We

characterize the maximum social welfare given the conflict of interest and the degree of prior bias. When

the most informative equilibrium in the cheap-talk game induces infinitely many actions, i.e., when the

conflict of interest between parties is small relative to the degree of prior bias, the maximum social welfare

with mediation turns out to be exactly the same as the social welfare achieved by this most informative

equilibrium. This result implies that, with a sufficient degree of prior bias, direct communication between

the expert and the decision maker is optimal among all possible communication protocols.

As we mentioned earlier, prior bias naturally captures mistrust. The decision maker mistrusts the

expert, and incorrectly thinks the expert’s advice is noisy. In particular, the decision maker believes that,

with a positive probability, the message she receives from the expert is completely uninformative, in which

case, she does not update her beliefs. As a result, welfare evaluated under the true, noise-free model

could exceed the standard upper bound given by Goltsman et al. (2009).4 The endogeneity of the noise

distribution and the fact that the expert’s message is actually free from noise (but the decision maker

wrongly believes it to be noisy) are the main differences between our model and that of Blume et al.

(2007).

One of the most prevalent findings in the experimental literature on strategic information transmission is

over-communication (see, e.g., Dickhaut, McCabe, and Mukherji, 1995; Blume, DeJong, Kim, and Sprinkle,

2001), the phenomenon that more information is transmitted from the sender to the receiver than the most

4This method of evaluating welfare under the true model is standard in the behavioral economics literature in the presence
of time inconsistency. See, for example, O’Donoghue and Rabin (1999) and O’Donoghue and Rabin (2003). For additional
discussion on the welfare criterion, see Section 5.
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informative equilibrium of the model.5 Two main explanations provided by the literature are truth-telling

preference (Gneezy, 2005; Gneezy, Kajackaite, and Sobel, 2018; Abeler, Nosenzo, and Raymond, 2019)

and individual heterogeneity of strategic sophistication (Cai and Wang, 2006; Wang, Spezio, and Camerer,

2010; Lafky, Lai, and Lim, 2022). Our model provides a novel way of rationalizing the over-communication

phenomenon: when people bring some home-grown mistrust to the lab, our theory suggests that more

information transmission than what the standard theory predicts may result.

The remainder of the paper is organized as follows. The rest of this section reviews the related literature.

Section 2 presents our main model, in which players have a quadratic loss utility, and characterizes the

set of equilibria. General welfare implications under a broad class of type distributions are also examined.

In Section 3, we focus on the uniform prior to present equilibrium properties and welfare implications.

Section 4 discusses the optimal mediation problem in the uniform-quadratic environment. We discuss the

welfare criterion in Section 5. Section 6 concludes.

1.1 Literature Review

In their seminal paper, Crawford and Sobel (1982) (hereafter CS) consider a model of strategic information

transmission in which a fully informed sender sends a cheap-talk message to a receiver, who then takes

action that affects the payoffs of both. The main insight obtained by CS is that more informative commu-

nication is possible when players’ preferences are more aligned. Blume et al. (2007) extend the CS model

to the situation in which the communication channel is noisy. When the sender sends a message, there

is a chance that any message in the message space is randomly transmitted to the receiver. Blume et al.

(2007) show that with an appropriately chosen degree of noise, there exists an equilibrium that is more

informative than the most informative equilibrium of CS.6 Goltsman et al. (2009) consider an optimal

mediation problem in the uniform-quadratic environment of CS and characterize the upper bound of the

social welfare. We consider the problem in the presence of prior bias and find that direct communication

is optimal among all possible communication channels, and the maximum social welfare strictly exceeds

the upper bound characterized by Goltsman et al. (2009). We identify that the main source of the welfare

gain relative to Goltsman et al. (2009) is the fact that prior bias induces information garbling only in the

head of the receiver and thus is less costly to society than directly introducing noise.

Many papers in the literature consider a type-dependent conflict of interest between the sender and the

receiver. Melumad and Shibano (1991) consider the standard communication game with quadratic utilities

and notice the existence of an equilibrium with infinitely many intervals. Gordon (2010) studies a more

general class of preferences and characterizes the conditions for the existence of such type of equilibria.

However, no welfare analysis of this type of equilibria has been conducted by either paper. In this strand

of research, our paper is most related to Kawamura (2015), who considers a uniform-quadratic setting

in which the sender and the receiver have asymmetric beliefs about the quality of the sender’s observed

signal. The uniform-quadratic specification of our model corresponds to the case in which the sender is

5See Blume, Lai, and Lim (2020) for the review of the most recent development of the literature.
6Earlier papers that illustrate the potential for mediation and a noisy communication channel to improve information

transmission include Forges (1985) and Myerson (2013).
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overconfident about the quality of his signal relative to the receiver. Kawamura (2015) shows that in this

case, finite-interval equilibria with more steps Pareto-dominate those with fewer steps, and a small level of

such overconfidence may improve information transmission beyond the level in CS. We extend the welfare

analysis to general type distributions, and show that prior bias can improve social welfare even beyond the

bound obtained by Blume et al. (2007), Goltsman et al. (2009), and Ivanov (2010).

In summary, our contribution to the literature is threefold: First, we provide a welfare analysis of the

infinite-interval equilibrium under general distributions. In particular, we show that under a variant of

the standard monotonicity condition, the infinite-interval equilibrium generates a higher welfare than any

finite-interval equilibrium. Second, we present a novel setting in which the conflict of interest between the

sender and the receiver is effectively type-dependent, but the ex ante preferences are aligned. This feature

allows us to compare the ex ante welfare obtained in our model with standard welfare bounds in Crawford

and Sobel (1982), Blume et al. (2007), and Goltsman et al. (2009). We find that the main ingredient of

our model, prior bias, may lead to an ex ante welfare that exceeds these welfare bounds, and that the

infinite-interval equilibrium plays an important role in the welfare gain. Third, we extend the optimal

mediation results in Goltsman et al. (2009) to the prior bias setting. We fully characterize the optimal

communication protocol, and show that mediation is unnecessary if the infinite-interval equilibrium is

played in the direct talk game.

Various behavioral models have been explored in the literature on strategic information transmission.

Kartik, Ottaviani, and Squintani (2007) and Kartik (2009) introduce näıveté of senders by assuming that

they have preferences for telling the truth. Ottaviani and Squintani (2006), Kartik et al. (2007), and Chen

(2011) relax the full rationality of receivers by assuming they are credulous. Jehiel and Koessler (2008)

applies the notion of analogy-based expectations equilibrium to the CS model and show that the analogy

grouping of the receiver may improve information transmission.

2 Setup

Consider a standard cheap-talk game. There are two players, an expert (henceforth the sender, or S), and

a decision maker (henceforth the receiver, or R). The sender is privately informed about the state of nature

θ ∈ [0,1], which is drawn from a common knowledge probability measure p0 with mean µ. We assume that

p0 has positive and continuous density everywhere in the support. Knowing θ, the sender sends a message

m ∈ M = [0,1] to the receiver, who then takes an action y ∈ Y = R. Both players’ payoffs depend on the

state of nature θ and the action y taken. In particular, the sender’s payoff is US(y, θ) = −(y − θ − b)2, and

the receiver’s payoff is UR(y, θ) = −(y − θ)2, in which 0 < b < µ. The parameter b measures the conflict of

interest between the two players and is assumed to be constant.

2.1 Prior-biased Receiver

We assume the receiver is prior-biased, as in Epstein (2006). Let p be the joint distribution of messages

and types, given the strategies of the players. On receiving each message m, a prior-biased receiver fails
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to fully update her beliefs to the Bayesian conditional distribution p(⋅∣m). Instead, she adopts q(⋅∣m) as

her posterior, given by

q(⋅∣m) = (1 − a)p(⋅∣m) + ap0(⋅), (2.1)

where a ∈ (0,1) measures the degree of prior bias. Thus, the receiver partially neglects the information

content of the signal in favor of her prior. We assume the sender knows a and takes the prior bias of the

receiver into account in his signaling strategy.

An alternative way to interpret our model is to consider the case in which the receiver mistrusts the

sender. The receiver incorrectly believes that, with probability a, the message she receives from the sender

is a pure noise, in which case, she does not update her beliefs.7 Under this interpretation, a captures the

degree of mistrust.

Let yR(θ) be the best response of the prior-biased receiver if the sender of type θ reveals himself.

With quadratic utility, yR(θ) = (1 − a)θ + aµ. For the sender, the same as in the standard setting, let

yS(θ) = arg maxy US(y, θ) = θ + b. Let θ∗ solve the equation yR(θ∗) = yS(θ∗), i.e., θ∗ = µ − b
a . We call θ∗ the

agreement type when it is nonnegative.

Note that the quadratic loss function we assume is not entirely harmless. Apart from generating the

interval-partitional equilibrium structure, quadratic utility plays an indispensable role in the analysis of

the optimal mediation problem as it does in Goltsman et al. (2009). With quadratic utility, the sufficient

statistic for welfare is the covariance between equilibrium actions and the state of nature, which is key in

the welfare calculations under the uniform-prior assumption. However, our results for general distributions

can be extended to preferences that have strict single-crossing expectational differences (Kartik, Lee, and

Rappoport, 2019) and admit at most one agreement type within the state space.

2.2 Equilibrium

Let σ ∶ Θ → ∆(M) be the behavioral strategy of the sender that specifies a distribution of messages for

each type θ. For the receiver, by the strict concavity of UR in y, it is without loss of generality to restrict

attention to pure strategies ρ ∶M → Y . The joint distribution of messages and types, p, is then given by

p(m,θ) = σ(m∣θ)p0(θ) for any m and θ. Let Eν be the expected value operator with respect to probability

measure ν.

Our equilibrium notion differs from the standard perfect Bayesian equilibrium in that the receiver

updates with prior bias a. In particular, given message m ∈ M , the receiver chooses the action that

maximizes her expected payoff given beliefs q(⋅∣m), rather than the Bayesian conditional p(⋅∣m).

Definition. Given a, {σ, ρ} is a prior-biased equilibrium (henceforth equilibrium) if

1. for all θ ∈ Θ, supp(σ(⋅∣θ)) ⊆ arg maxm′∈M US(ρ(m′), θ), and

7This happens if the message is randomly drawn from the ex ante distribution of equilibrium messages, independent to
the state of nature.
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2. for all m ∈M , ρ(m) = arg maxy∈Y ∫ΘUR(y, θ)q(dθ∣m) where

q(θ∣m) = (1 − a) σ(m∣θ)p0(θ)
∫Θ σ(m∣θ)p0(dθ)

+ ap0(θ)

for all θ ∈ Θ and any m ∈M such that ∫Θ σ(m∣θ)p0(dθ) > 0.

In fact, any prior-biased equilibrium can be interpreted as a perfect Bayesian equilibrium under the

assumption that the receiver holds incorrect beliefs about the information transmitted. In particular,

consider a receiver who mistakenly believes that, with probability a, the message she receives is just a

random draw from the ex ante distribution of equilibrium messages, ∫Θ σ(⋅∣θ)p0(dθ). In this case, the

“noise” is independent to equilibrium messages and thus is completely uninformative about the state.

Thus, on receiving any equilibrium message m, the Bayesian update of such a receiver will exactly be

q(⋅∣m). Hence, the main differences between this paper and Blume et al. (2007) are the endogeneity of the

noise distribution and the welfare considerations that result from the receiver’s incorrect beliefs.

Our equilibrium notion is also tightly connected to that of cursed equilibrium (Eyster and Rabin, 2005),

in which each player partially neglects the information content of other players’ strategies. In fact, any

prior-biased equilibrium in the strategic communication game can be expressed as a cursed equilibrium in

which the receiver is cursed.

Observe that a babbling equilibrium in which no information is transmitted always exists. In order to

characterize the set of informative equilibria, it is useful to define the notion of outcome equivalence. Let

ν and ν′ be the joint distribution of types and actions induced by {σ, ρ} and {σ′, ρ′}, respectively. We say

that {σ, ρ} and {σ′, ρ′} are outcome equivalent if ν(⋅∣θ) = ν′(⋅∣θ) for all but a set of types that is at most

countable. An equilibrium is interval-partitional if (i) each type θ induces a single action and (ii) for each

y ∈ Y , the set of all types that induces y is a (possibly degenerate) interval.

As usual, any equilibrium in our model is outcome equivalent to an interval-partitional equilibria.8 In

an interval-partitional equilibrium, a closed interval I ⊆ [0,1] is a pooling interval if all types in the interior

of I induce the same action and any type outside I induces a different action. Any boundary point of a

pooling interval is called boundary type. We say that a sender of type θ separates if he induces an action

distinct from all other types. Given any closed interval [τ, τ ′] ⊆ [0,1], let γ(τ, τ ′) denote the conditional

mean of θ with respect to p0 given that θ ∈ [τ, τ ′]. Note that since p0 has positive and continuous density

everywhere in the support, γ is strictly increasing in both arguments and γ(τ, τ) = τ for all τ ∈ [0,1].
For any 1 ≤ n ≤ ∞, an interval-partitional equilibrium is said to be an n-step equilibrium if n non-

degenerate pooling intervals are induced. In terms of descriptive properties, our model belongs to the class

of communication games in which the conflict of interest between the sender and the receiver depends

on the underlying type, which is first considered by Melumad and Shibano (1991), and further explored

by Gordon (2010) and Kawamura (2015). In particular, when θ∗ ≥ 0, the sender exhibits outward bias;

the locus of the sender’s most preferred action, [yS(0), yS(1)], contains the locus of the receiver’s best

8See Blume et al. (2007, Proposition 1) for a proof. The proposition applies directly because it exploits only the optimality
of the sender whose preferences satisfy the standard assumptions imposed by Blume et al. (2007).
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response, [yR(0), yR(1)]. By Gordon (2010, Theorem 4), in the case of outward bias, there is at least one

∞-step equilibrium. Let N(a, b) ∈ Z+ ∪ {∞} be the maximum number of non-degenerate pooling intervals

supported by a and b.

Consider an arbitrary interval-partitional equilibrium. Let [θi−1, θi] and [θi, θi+1] be two neighboring

pooling intervals that induce actions yi and yi+1, respectively. The incentive compatibility of the receiver

and the sender requires

yi = (1 − a)γ(θi−1, θi) + aµ,
yi+1 = (1 − a)γ(θi, θi+1) + aµ,

θi =
yi + yi+1

2
− b.

Combining the equations above yields the following second-order difference equation:

V (θi−1, θi, θi+1∣a, b) ≡ (1 − a)γ(θi−1, θi) + γ(θi, θi+1)
2

+ aµ − b − θi = 0. (2.2)

For any N ∈ Z+∪{∞}, an increasing (decreasing) sequence {τi}Ni=0 is a forward (backward) solution to (2.2)

if τ0 < τ1 (τ0 > τ1) and V (τi−1, τi, τi+1∣a, b) = 0 for 1 ≤ i < N .

The following proposition summarizes the characterization results that are familiar to the literature.

Proposition 1. N(a, b) =∞ if and only if θ∗ ≡ µ − b
a ≥ 0. Furthermore, in any ∞−step equilibrium, θ∗ is

the unique type that separates, and the set of boundary types is given by {θi}∞i=0 ∪ {θ∗} ∪ {θ′i}∞i=0 in which

(i) if θ∗ > 0, {θi}∞i=0 is a forward solution to (2.2) with θ0 = 0; if θ∗ = 0, then θi = 0 for all i,

(ii) {θ′i}∞i=0 is a backward solution to (2.2) with θ′0 = 1,

(iii) limi→∞ θi = limi→∞ θ′i = θ∗.

Proof. See Appendix A.

Hence, in any ∞-step equilibrium, the agreement type is the unique type that separates, and the

pooling intervals become arbitrarily small as they approach the agreement type from either side. The

existence of an ∞-step equilibrium with similar features in the presence of an agreement type is also noted

by Kawamura (2015) under the uniform type distribution. Next, we turn to the focus of this paper, the

welfare results.

2.3 Welfare

Non-Bayesian agents are potentially time-inconsistent. Therefore, we will need to be more careful when

selecting the welfare criterion. Given a strategy profile {σ, ρ}, for j = S,R, the ex ante expected payoff

of j is given by EUj ≡ Ep[Uj(ρ(m), θ)]. For a sender of type θ, his interim expected payoff is IUS(θ) ≡
Ep[US(ρ(m), θ)∣θ]; upon receiving message m, the interim expected payoff of the receiver is IUR(m) ≡
Eq[UR(ρ(m), θ)∣m], the ex ante expected value of which is EIUR ≡ Ep[Eq[UR(ρ(m), θ)∣m]].
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The beliefs of the receiver, albeit prior-biased, are a martingale. In other words, the expected interim

beliefs of the receiver coincide with the prior, which directly implies that EIUR = EUR. Moreover, under

quadratic utility, this martingale property ensures that in equilibrium, the ex ante expected action of the

receiver is still the mean of θ as in standard cheap-talk games. Thus, the following proposition holds,

which shows that the ex ante welfare is aligned among the sender, the ex ante self of the receiver, and

the interim self of the receiver. This result allows us to welfare-rank equilibria according to EUR without

worrying about the welfare consequences of time inconsistency. We further discuss this welfare criterion

in Section 5.

Proposition 2. If {σ, ρ} is a prior-biased equilibrium, then

EUR = EIUR = EUS + b2.

Proposition 2 marks the main difference between our model and other cheap-talk models with a type-

dependent bias (e.g., Melumad and Shibano, 1991): in our model, ex ante welfare is aligned between the

sender and the receiver irrespective of the degree of prior bias. This observation enables us to Pareto-rank

equilibria according to EUR across different degrees of prior bias and thus allows us to compare the level

of welfare achieved in our model with that in standard strategic communication games.

To obtain comparative statics results, Crawford and Sobel (1982) introduce a monotonicity condition

called Condition (M). We now introduce the same condition in our context.

Condition (M). Given a and b, if τ̄ and τ̂ are two forward (or two backward) solutions to (2.2) with

τ̄0 = τ̂0 and τ̄1 > τ̂1, then τ̄i > τ̂i for all i ≥ 2.

In our model, Condition (M) is not sufficient for uniqueness of n-step equilibrium for every n. In regard

to ∞−step equilibria, even if τ̄i > τ̂i for all i, the sequences can still have the same limit, and thus, the

uniqueness of equilibrium partitions is not guaranteed. Therefore, we state a stronger form of Condition

(M). This stronger form, called Condition (M∗), also holds, given the sufficient condition of Condition (M)

provided by Crawford and Sobel (1982, Theorem 2).

Condition (M∗). Given a and b, if τ̄ and τ̂ are two forward (or two backward) solutions to (2.2) with

τ̄0 = τ̂0 and τ̄1 − τ̂1 > 0, then there is ε > 0 such that τ̄i − τ̂i > ε for all i ≥ 1.

Besides the uniqueness of n-step equilibrium, Condition (M∗) also ensures that both the sender and

the receiver prefer the equilibrium with the largest number of steps among all equilibria.

Theorem 1. Given a and b, if Condition (M∗) holds, then

(i) for any 1 ≤ n ≤ N(a, b), all n-step equilibria are outcome equivalent;

(ii) ex ante, any N(a, b)-step equilibrium Pareto-dominates equilibria with fewer steps.

Proof. See Appendix A.
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In Kawamura (2015), it is shown that under the uniform type distribution, finite-step equilibria with

more steps Pareto-dominate those with fewer steps. We consider general type distributions and include

the ∞-step equilibrium into the welfare anaylsis. In particular, Theorem 1 shows that under Condition

(M∗), equilibria with the largest number (∞ included) of steps always Pareto-dominate those with fewer

steps.

Note that Theorem 1 is silent on how equilibria with fewer than N(a, b) steps are ranked. When

the agreement type does not exist (θ∗ < 0), standard welfare arguments apply, which ensures that any

equilibrium with more steps dominates equilibria with fewer steps. However, when the agreement type

exists (θ∗ > 0), sender types below θ∗ demand a lower action than the receiver, and thus, ex ante welfare may

not be increasing in the second largest boundary type. In this case, we show that the ∞-step equilibrium

still Pareto-dominates all other equilibria.

Now, we briefly sketch the proof for part (ii) when θ∗ > 0. First, for every finite-step equilibrium, we

perturb it by artificially inserting θ∗ as a boundary type. In this way, we are making every finite-step

equilibrium strictly more informative. Focus on [0, θ∗] (as the argument for [θ∗,1] is symmetric). Within

[0, θ∗], by yS(θ) ≤ yR(θ), the sender always demands a weakly lower action than the receiver. Then,

standard welfare arguments imply that a decrease in the first cutoff θ1 results in an increase in the number

of partitions within [0, θ∗] and increases the ex ante welfare within [0, θ∗]. In addition, by Proposition 1, in

any ∞-step equilibrium, θ∗ must be a boundary type. Hence, as the number of equilibrium partitions goes

to infinity, the welfare of the perturbed equilibrium converges to the welfare of the ∞-step equilibrium,

which implies that the ∞-step equilibrium Pareto dominates all finite-step equilibria.

The following proposition shows that log-concavity of the type distribution is sufficient for Condition

(M∗) to hold.9

Proposition 3. If p0 has continuously differentiable and log-concave density, then Condition (M∗) holds

for any a ∈ (0,1) and b ∈ (0, µ).

Proof. See Appendix A.

To see the main idea of the proof, let {θ0, θ1, θ2} be a forward solution to (2.2) and consider increasing

both θ1 and θ2 by ∆. Due to log-concavity, it can be shown that ∂γ(θ+∆,θ+∆)
∂∆ ∣∆=0 = γ1(θ, θ) + γ2(θ, θ) ≤ 1

for any θ < θ.10 Consider increasing θ0 by ∆ and θ1 by ∆′ for some small ∆ and ∆′ such that ∆′ > ∆.

Since the conditional expectation γ(θ0, θ1) will increase by less than ∆′, the action induced by [θ0, θ1] will

increase by less than (1 − a)∆′. As θ1 is increased by ∆′, its optimal action is also increased by ∆′. Thus,

for θ1 to be indifferent, the action induced by [θ1, θ2] will need to be increased by more than ∆′, which

requires that θ2 be increased by more than ∆′. Inductively, it is easy to see that if τ̄ and τ̂ are two forward

solutions to (2.2) with τ̄0 = τ̂0 and τ̄1 − τ̂1 > 0 , then τ̄i − τ̂i ≥ τ̄i−1 − τ̂i−1 ≥ ⋯ ≥ τ̄1 − τ̂1.

For the purpose of equilibrium refinement, we adopt the no-incentive-to-separate criterion proposed by

Chen, Kartik, and Sobel (2008), which requires that the worst type does not want to deviate by separating

9By contrast, Szalay (2012) shows that if ∂UR(y,θ)
∂y

+
∂UR(y,θ)

∂θ
is non-increasing in y, ∂US(y,θ)

∂y
+
∂US(y,θ)

∂θ
is non-decreasing

in y, and p0 has a log-concave density, then for any finite n, all n-step equilibria, if they exist, must be outcome equivalent.
10See Lemma 2 in Appendix A for a detailed proof.
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himself. In Appendix B, we show that with log-concavity, generically only the most informative equilibrium

survives the refinement. Hereafter, we will focus on the N(a, b)-step equilibrium when presenting the

remaining welfare results.

Next, we compare the welfare achieved in our model with the welfare achieved in the standard cheap

talk. With a harmless abuse of notation, let EUR(a, b) denote the ex ante welfare of the receiver in

the N(a, b)-step equilibrium, and let EUR(0, b) denote the ex ante welfare of the receiver in the most

informative cheap-talk equilibrium. The following proposition shows that under Condition (M∗), if the

conflict of interest is sufficiently large, then setting the degree of prior bias to be b
µ will improve welfare

relative to the case without prior bias.

Proposition 4. If p0 has continuously differentiable and log-concave density, then there exists b∗ ∈ (0, µ2 )
such that EUR( bµ , b) > EUR(0, b) for any b ∈ (b∗, µ).

Proof. See Appendix A.

Note that if a = b
µ , the agreement type θ∗ is 0. Thus, EUR( bµ , b) is in fact the welfare of an ∞-step

equilibrium in which type 0 separates. We can always construct such an ∞-step equilibrium for any

b ∈ (0, µ). In contrast, for sufficiently large values of b, information transmission in the standard cheap-

talk equilibrium is low. In this case, the strategic advantage generated by a sufficient level of prior bias

outweighs the distortion towards the actions. Next, we turn to the uniform distribution for more welfare

results.

3 The Uniform Case

In this section, we further assume that p0 is the uniform distribution on [0,1]. The uniform prior enables

us to compare our welfare results with several important recent contributions in the literature, including

Blume et al. (2007) and Goltsman et al. (2009). Note that the uniform distribution is log-concave, which

implies that Condition (M∗) is satisfied. The remainder of the paper focuses on this uniform-quadratic

case unless stated otherwise.

Figure 1 illustrates how the maximum number of intervals N(a, b) varies as a function of a and b.

Consistent with the standard finding in the literature, given the degree of prior bias, the maximum number

of equilibrium partitions weakly decreases in the degree of conflict of interest between the parties. Moreover,

given the degree of conflict of interest, the maximum number of equilibrium partitions weakly increases in

the degree of prior bias. This observation confirms our intuition that prior bias encourages the sender to be

more informative in his messages. Specifically, when the conflict of interest is small relative to the degree

of prior bias, there exists an ∞-step equilibrium. In Appendix C, we present the full characterization of

all equilibria in the model.

10
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Figure 1: Maximum Number of Equilibrium Intervals

3.1 Welfare Results of the Uniform Case

In this section, we compare the welfare obtained in our model with that in Goltsman et al. (2009). Goltsman

et al. (2009) show that in the uniform-quadratic setting, the maximum welfare for a Bayesian receiver across

all communication protocols, denoted as EUB
R(b), is −1

3b(1− b). This upper bound can also be achieved in

Blume et al. (2007) via a noisy communication channel and in Krishna and Morgan (2004) with multi-stage

communication.

The following theorem states that with a properly chosen degree of prior bias, EUR(a, b) exceeds the

upper bound EUB
R(b).

Theorem 2. Given any b ∈ (0, 1
2), there exists a∗ ∈ (0,2b) and a∗∗ ∈ (2b,1) such that EUR(a, b) > EUB

R(b)
for any a ∈ (a∗, a∗∗).

Proof. See Appendix A.

The main source of the welfare gain relative to Goltsman et al. (2009) is the fact that prior bias

garbles the information only in the head of the interim receiver, which relieves the conflict of interest

between parties without actually contaminating the content of the messages. On one hand, because of this

information garbling, the sender is encouraged to send more informative messages since the link between

his message and the receiver’s response is weakened. On the other hand, since the information is not

garbled in reality, the receiver always receives the right message to begin with, and thus the mismatch

between messages and actions that comes with standard garbling devices is avoided. In this sense, prior

bias can be regarded as a nonstandard, cheaper information-garbling device.

Note that the existence of ∞-step equilibria plays an important role in Theorem 2. Recall that a = 2b

is the boundary condition under which the most informative equilibrium induces infinitely many steps.

By Theorem 2, this boundary condition always ensures that the resulting ∞-step equilibrium strictly

Pareto-dominates the upper bound EUB
R(b). In Blume et al. (2007), ∞-step equilibria exist when there

11
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Figure 2: Welfare Comparison versus Blume et al. (2007)

is a sufficient level of noise. In their ∞-step equilibria, although the sender is very informative with his

messages, a large amount of information is lost in the transmission before the receiver further discounts the

content. In our model, by contrast, the fact that the messages are delivered verbatim allows both parties

to gain from the fine information partition induced in the ∞-step equilibria, making the equilibria much

more attractive.

To understand the source of the welfare gain more systematically, we conduct a simple decomposition

exercise on the effects of prior bias as an information-garbling device. On the positive side, we define

any changes in welfare resulting from changes in the equilibrium partition as the strategic effect. On the

negative side, information garbling, broadly defined, distorts the actions of the receiver, which we call the

distortionary effect.

In particular, given any equilibrium partition, let y0 be the best response of the receiver if no noise

or bias is introduced, which represents the information content of the sender’s messages. Then, in any

interval-partitional equilibrium with information garbling, quadratic utility implies that

EUR = −E[(y0 − θ)2] −E[(y − y0)2].

The first term, −E[(y0−θ)2], is the receiver’s payoff given the equilibrium partition if no noise or bias were

introduced. The second term, −E[(y − y0)2], measures the welfare loss due to distortion of actions induced

by information garbling.

Example 1. Let a = 0.2 and b = 0.1. We have that θ∗ = 0 and α = 3+
√

5
2 . The information partition induced

by the ∞-step equilibrium is illustrated as follows:

0 10.380.150.06. . .

Then, EUR ≈ −0.0233 > −0.03 = −1
3b(1 − b). In the CS model, the Pareto-optimal equilibrium (with two

steps) achieves EUCS
R ≈ −0.0308. Given the partition above, if the receiver were to select the Bayesian

response, her payoff would be EU0
R ≈ −0.0208. The difference, EU0

R −EUCS
R ≈ 0.0100, captures the strategic

effect. The remaining change, EUR −EU0
R ≈ −0.0025, represents the distortionary effect.

Figure 2 compares the welfare decomposition between Example 1 in our model and Example 1 in

12
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Figure 3: Welfare Comparison versus the Endogenous Noise Model

Blume et al. (2007).11 In Blume et al. (2007), the receiver is Bayesian but the message from the sender is

replaced with probability ε by a random draw from the uniform distribution over the message space. In

their Example 1, Blume et al. (2007) consider a very low level of noise ε = 1
126 and show that the three-step

equilibrium with the following partition achieves the welfare bound for b = 0.1:

0 10.320.04

Compared with this example, on one hand, our Example 1 generates a substantially larger strategic effect

(+0.0100 versus +0.0028) due to the fact that a sufficient level of information garbling (a = 0.2) leads to

a much finer equilibrium partition. On the other hand, since information is not garbled in reality, the

distortionary effect of a relatively large a in our model is similar to that of a very small ε in Blume et al.

(2007) (-0.0025 versus -0.0020).

To better compare prior bias with noise, we introduce the endogenous noise model as a second bench-

mark: Suppose the receiver is Bayesian but the message from the sender reaches the receiver only with

probability 1−a. With probability a, the message delivered to the receiver is drawn randomly from the ex

ante marginal distribution of equilibrium messages.12 This model implements the same updating behavior

as equation (1.1) by injecting real noise into the communication channel. In fact, the endogenous noise

model generates exactly the same equilibrium partitions and ex ante distribution of actions as the prior

bias model does. As a result, comparing the welfare achieved in the endogenous noise model and that

in the prior bias model highlights the difference between standard information garbling devices and prior

bias.

Figure 3 compares the welfare decomposition between the ∞-step equilibrium in our model and that

in the endogenous noise model for a = 0.2 and b = 0.1. First, observe that both models achieve the same

level of strategic effect (+0.0100), simply because the same equilibrium partition is generated. Second,

the endogenous noise model incurs a much larger distortionary effect than the prior bias model (-0.0225

versus -0.0025). This difference in the distortionary effect is significant enough to bring the welfare in the

endogenous noise model (-0.0433), which is far from the upper bound (-0.0300), up to the level that beats

11We define the distortionary effect differently from Blume et al. (2007). Our distortionary effect is the sum of the direct
effect and the distortion effect in Blume et al. (2007). We combine the effects since (i) the direct effect also distorts the
receiver’s action away from her optimal response given the equilibrium partition; (ii) no direct effect is induced in the prior
bias model.

12In other words, the “incorrect” mental model of the receiver under our mistrust interpretation now matches the reality.
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it (-0.0233).

Note that since the two models induce the same partition and ex ante distribution of actions, the

difference in the distortionary effect boils down to the difference in cov(y, y0)—how well the receiver’s

actions match the sender’s messages. In the endogenous noise model, conditioning on the event that

the true message is delivered, the covariance between y and y0 exactly coincides with the unconditional

covariance in the prior bias model. However, conditioning on the noise event, the action taken by the

receiver is independent of the true state of the world, and thus, the covariance between y and y0 is zero.

Thus, the endogenous noise model always generates a worse match between actions and messages compared

with the prior bias model.

To summarize, the introduction of prior bias may create an agreement type between the sender and

the receiver, which leads to the existence of an ∞-step equilibrium, and thus more informative messages

sent from the sender. In addition, since prior bias only affects the mental model of the receiver, it avoids

the mismatch between messages and actions that comes with standard information garbling devices. Note

that the existence of the ∞-step equilibrium with a sufficient level of prior bias, and the fact that the prior

bias model Pareto-dominates the endogenous noise model, hold irrespective of the underlying distribution

of types.

Nevertheless, the optimal information garbling in Goltsman et al. (2009) does not exactly match the

endogenous noise model. While our general intuition that prior bias avoids the mismatch between messages

and actions still hold, whether prior bias dominates optimal information garbling depends on the underlying

distribution. With uniform prior, the sender’s incentive compatibility constraints directly impose an upper

bound on the covariance between equilibrium actions and the state of nature, which is the sufficient statistic

for ex ante welfare. As a result, the interim payoff of sender type 0 plays a vital role in determining welfare.

In fact, with uniform prior, it can be shown that in any equilibrium, with or without information garbling,

−E[(y0 − θ)2] = g1(a) ⋅ h(IUS(0)) − var(θ) (Strategic effect)
−E[(y − y0)2] = −g2(a) ⋅ h(IUS(0)) (Distortionary effect)

where IUS(0) is the interim expected payoff for the type 0 sender, and g1, g2, h, and g1−g2 are nonnegative,

strictly increasing functions within the relevant domain. At a = b
µ , the interim expected payoff IUS(0)

achieves the maximum possible level, 0, in the ∞-step prior-biased equilibrium, and so it does under

optimal information garbling in standard models with a = 0.13 Thus, the welfare gain is mainly due to

the fact that g1(a) − g2(a) is larger than g1(0) − g2(0) for any a ∈ (0,1). As a result, for the same level of

strategic effect, prior bias always induces a smaller distortionary effect than standard information garbling

devices.

In Appendix D, we show that essentially the same arguments apply to distributions such that the recip-

rocal of the hazard function is linear, and also to distributions close to this class. For these distributions,

when a ∈ (0, bµ), an increase in a tends to increase welfare since the effective conflict of interest for type 0 is

13As is shown in Goltsman et al. (2009), under the uniform-quadratic setting, a mediation policy achieves the upper bound
if and only if IUS(0) = 0.
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mitigated. When a ∈ ( bµ ,1), an increase in a increases the conflict of interest for type 0, and thus tends to

decrease the interim payoff of type 0. However, the effect on welfare may be ambiguous within this range,

since g1 − g2 is increasing in a. As a approaches 1, ex ante welfare will inevitably decrease and approach

the level in the babbling equilibrium, simply because all actions that the receiver takes will approach the

mean.

4 Optimal Communication Protocol

In this section, we explore the optimal mediation problem for b ∈ (0, 1
2).14 We characterize the maximum

welfare achieved by any communication protocol in the presence of prior bias and show that direct com-

munication between the sender and the receiver is optimal when the conflict of interest between parties

is small relative to the degree of prior bias. When direct communication is suboptimal, we show that the

maximum welfare in this case always exceeds the upper bound obtained by Goltsman et al. (2009).

Suppose that there exists a mediator who can design the joint distribution of actions and types. Then

optimal mediation is a probability measure on Y ×Θ that solves the following optimization problem:

max
ν∈∆(Y ×Θ)

EUR = −∫
Y ×Θ

(y − θ)2ν(dy, dθ) (4.1)

subject to 1 = ∫
Y
ν(dy, θ), ∀θ ∈ Θ; (Prob)

θ = arg max
θ̂∈Θ

[−∫
Y
(y − θ − b)2ν(dy, θ̂)] , ∀θ ∈ Θ; (ICS)

y = (1 − a) ⋅ ∫Θ θν(y, dθ)
∫Θ ν(y, dθ)

+ a ⋅ 1

2
, ∀y ∈ Y s.t. ∫

Θ
ν(y, dθ) > 0, (ICR)

where (Prob) is the feasibility constraint that requires the marginal distribution of types be uniform, (ICS)

is the incentive compatibility constraint for the sender to truthfully report his type, and (ICR) ensures that

the prior-biased receiver follows the recommendation of the mediator. Since the ex ante welfare is aligned

between the sender and the receiver, (4.1) can be recast into the problem of maximizing the sender’s ex

ante welfare in the presence of a type-dependent conflict of interest on the receiver’s side.15 We say that

ν ∈ ∆(Y ×Θ) is a mediation rule if ν satisfies (Prob), (ICS) and (ICR). Given a mediation rule ν, again

let IUS(θ) be the interim expected payoff for a sender of type θ, i.e., IUS(θ) = Eν[US(y, θ)∣θ].
Goltsman et al. (2009) consider optimization problem (4.1) with a = 0. They first express social welfare

as a function of IUS(0) using an envelope condition and then show that optimal mediation must assign

the maximum possible interim payoff to type 0 and thus set IUS(0) = 0. In their analysis, type 0 is special

because it is the worst type that no other type wants to mimic. This is not always the case when a > 0. In

14Goltsman et al. (2009) consider the same problem without the incentive constraints for the receiver. They show that if
b ≥ 1

2
, the optimal policy will be to recommend the prior mean no matter what the sender reports, which clearly satisfies the

incentive constraints in our case. Thus, the same policy is also the optimal mediation rule in our case if b ≥ 1
2
.

15In contrast, Alonso and Rantakari (2013) consider the optimal mediation problem in which the receiver is Bayesian
but the sender has a type-dependent conflict of interest. They show that when both parties agree at some extreme type,
the optimal cheap-talk equilibrium may assign the maximum possible interim payoff to that type, and thus maximize the
receiver’s welfare.
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particular, when b ∈ (0, a2), a sender of type a
2 − b, if he manages to pretend to be of type 0, will induce his

ideal action, a
2 .

The following lemma plays a vital role in our analysis of the optimal mediation problem (4.1).

Lemma 1. Let X and Z be two L1 random variables such that E[X ∣Z] = Z. Then, for any t ∈ R,

E[Z1X≤t] ≥ E[X1X≤t]

where 1X≤t = 1 if X ≤ t and 0 otherwise.

Proof. See Appendix A.

To see why Lemma 1 is relevant in the context of strategic communication, note that under quadratic

preferences, in any strategic communication game with a Bayesian receiver, the prior distribution of the

state of nature is a mean-preserving spread of the ex ante distribution of equilibrium actions, i.e., E[θ∣y] = y.

Then, Lemma 1 implies that given any threshold t, a sender of types below t, on average, induces actions

above their types. Specifically, under the uniform-quadratic setting, Lemma 1 provides a lower bound for

the additional information rent of type t over type 0, since additional rent is increasing in the average

action induced by types below t.16 In short, this lemma relates an equilibrium object (average Bayesian

response) to the primitives (average type) regardless of the communication protocol.

With Lemma 1, we arrive at the following theorem, which characterizes when a mediation rule—i.e., a

feasible probability measure—solves the optimization problem (4.1).

Theorem 3. A mediation rule is optimal if and only if the following two conditions are met:

(i) IUS(max{0, θ∗}) = 0;

(ii) 1θ≤θ∗ = 1y ≤ θ∗+b almost surely.

Proof. See Appendix A.

When θ∗ ≤ 0, (ii) is satisfied automatically. In this case, a mediation rule is optimal if and only if

it assigns the maximum possible interim payoff to type 0. This is the direct counterpart of Lemma 1 in

Goltsman et al. (2009) under the prior bias setting. As is the case in Goltsman et al. (2009), the interim

expected payoff of type 0 sender uniquely pins down the ex ante welfare. Hence, any mediation rule that

assigns an interim payoff of 0 to type 0 must maximize welfare.

When θ∗ > 0, (i) requires that the maximum possible interim payoff be assigned to type θ∗, and (ii)

requires that the mediator only recommend actions below θ∗ + b if the sender reports a type below θ∗,

and vice versa, essentially segregating the state space into [0, θ∗] and [θ∗,1]. These conditions, while

unfamiliar to the literature, are consequences of the interplay between Lemma 1 and the sender’s incentive

16Under the uniform-quadratic setting, incentive compatibility of the sender implies that

IUS(t) − IUS(0) = ∫
t

0
2(E[y∣θ] − (θ + b))dθ = 2E[y1θ≤t] − t

2
− 2bt.
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compatibility constraints. When θ∗ > 0, by Lemma 1, the additional information rent of type θ∗ over type

0 achieves its lower bound when the average action induced by types below θ∗ matches the average type

below θ∗. This only happens when (ii) holds. Hence, when (i) and (ii) both hold, the interim payoff of

type 0, and thus the ex ante welfare, is maximized.

Let V (a, b) denote the maximum welfare attained in (4.1), given a and b. Recall that the ∞-step

equilibrium, if it exists, satisfies both conditions of Theorem 3, since the equilibrium is interval partitional

and type θ∗ induces his ideal action θ∗ + b. Hence, if b ∈ (0, a2], the ∞-step equilibrium in the direct-talk

game must have already achieved V (a, b).

Theorem 4. (i) If b ∈ (0, a2], then V (a, b) = 1−a2
3+a (1

4 − b2

a ) − 1
12 and direct communication is optimal.

(ii) If b ∈ (a2 , 1
2), then V (a, b) = 1+a

3+a (b − 1
2
)2 − 1

12 and direct communication is suboptimal.

Proof. See Appendix A.

Thus, when an ∞-step equilibrium is played in the direct talk game, no other communication protocol,

including the noisy communication channel (Blume et al., 2007), multi-stage direct talk (Krishna and

Morgan, 2004), communication via a trustworthy mediator (Goltsman et al., 2009), and communication

via a strategic mediator (Ivanov, 2010), can further improve efficiency. This is against the conventional

wisdom that a neutral mediator enhances communication when the receiver is conservative or when she

mistrusts the sender. When the level of conservatism/mistrust is high, it may create a state at which the

sender and the receiver agree on the optimal action, around which communication can be very effective.

In this case, a one-shot direct communication between the parties can already be optimal.

On the other hand, if no ∞-step equilibrium exists, additional mediation may improve information

transmission. In this case, we construct an optimal mediation rule in Appendix E. With the help of

mediation, the maximum welfare attained in this case is always higher than the upper bound −1
3b(1 − b).

The results suggest that under uniform-like distributions, prior bias is a cheaper substitute for mediation

in generating the ideal action for type 0—prior bias distorts the receiver’s response toward the mean when

the sender type is 0 but avoids the mismatch between actions and messages. When prior bias is sufficiently

large to induce the ideal action for type 0, no mediation is necessary; when prior bias is not sufficient,

additional mediation is needed, but the level needed is lower than the case without prior bias.

5 A Discussion of the Welfare Criterion

In this section, we discuss the welfare criterion that we used in our analysis. For any prior p0 and joint

distribution of messages and types p, define

q(m,θ) ≡ (1 − a)p(m,θ) + ap0(θ)∫
Θ
p(m,dθ)

for any m and θ; that is, q is the ex ante joint distribution of messages and types according to the

endogenous noise model, which is also the incorrect mental model of the interim receiver under our mistrust
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interpretation. Let EU∗
R ≡ Eq[UR(ρ(m), θ)] be the ex ante expected payoff of the receiver under the

incorrect beliefs q.

Proposition 5. If {σ, ρ} is a prior-biased equilibrium, then

EUR = 1 + a
1 − aEU∗

R +
2a

1 − avar(θ).

Proof. See Appendix A.

Proposition 5 suggests that holding a constant, EU∗
R and EUR are aligned. Hence, the Pareto optimality

of the most informative equilibrium in Theorem 1, the characterization of the optimal mediation rule in

Theorem 3, and the (sub)optimality of direct communication in Theorem 4, all hold irrespective of the

welfare criterion. Although the welfare comparison with cheap talk in Proposition 4 involves different

values of a, the result only depends on the existence of the ∞-step equilibrium when a = b
µ . Thus, the

counterpart of Proposition 4 holds even if EU∗
R is adopted.

Nevertheless, the interpretation of Theorem 2 relies crucially on using EUR as the welfare criterion.

As the endogenous noise model can be implemented by a mediator, we always have EU∗
R ≤ EUB

R(b). This

means that the counterpart of Theorem 2 for EU∗
R will not hold. On a brighter note, since the sender is

fully time-consistent, EUS unequivocally measures the ex ante welfare for the sender. Then, by Proposition

2, we can rank the ex ante welfare of the sender in the same order as in Theorem 2, and conclude safely

that the receiver’s prior bias may increase the ex ante welfare of the sender beyond the corresponding

bound achieved with optimal mediation.

Our rationale for selecting EUR as the welfare criterion is as follows. First, EUR evaluates welfare from

a rational outside observer’s perspective and thus is the natural and normative criterion. Furthermore,

while EU∗
R may better represent the preference of a naive receiver who simply considers q to be the correct

model, EIUR represents the preference of a sophisticated receiver who matches the description in Epstein

(2006)—the agent is “self-aware and anticipates her updating behaviour when formulating plans.” As EUR

and EIUR are aligned, it is least controversial to use EUR as the welfare criterion. In fact, our method

of evaluating welfare under the correct model is standard in the behavioral economics literature in the

presence of time inconsistency. See, for example, O’Donoghue and Rabin (1999).

6 Conclusion

In this paper, we incorporate prior-biased belief updating into the communication environment of CS. To

the best of our knowledge, this paper is the first to consider an updating bias in the strategic communica-

tion setting. We find that prior bias can be treated as a nonstandard garbling device that weakens the link

between the sender’s message and the receiver’s response and, more importantly, does so without contam-

inating the actual content of the messages. As a result, society benefits from the strategic advantage of

information garbling without paying the full cost. Thus, the efficiency bound characterized in our model

exceeds that of Goltsman et al. (2009). Moreover, when the degree of prior bias is sufficient, no addi-
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tional garbling device is useful to further improve the efficiency of communication—direct communication

is optimal in the presence of a sufficient degree of prior bias.

A shared concern in the literature on strategic communication is the dependence on the uniform-

quadratic environment. The welfare results in both Blume et al. (2007) and Goltsman et al. (2009) largely

rely on the uniform-quadratic assumption, as do most of the welfare results in this paper. Nevertheless,

we believe that our intuition still holds in more general settings. First, the introduction of an updating

bias may create an agreement type between the sender and the receiver, which leads to the existence of

an ∞-step equilibrium or, in other words, more communication. Second, since the updating bias affects

only the mental model of the receiver, it may create less distortion of the receiver’s action compared with

standard implementations of the same equilibrium partition.

19



References

Abeler, J., D. Nosenzo, and C. Raymond (2019). Preferences for truth-telling. Econometrica 87 (4), 1115–1153.

Alonso, R. and H. Rantakari (2013). The art of brevity. Working Paper .

Benjamin, D. J. (2019). Chapter 2 - errors in probabilistic reasoning and judgment biases. Volume 2 of Handbook

of Behavioral Economics: Applications and Foundations 1, pp. 69 – 186. North-Holland.

Blume, A., O. J. Board, and K. Kawamura (2007). Noisy talk. Theoretical Economics 2 (4), 395–440.

Blume, A., D. V. DeJong, Y.-G. Kim, and G. B. Sprinkle (2001). Evolution of communication with partial common

interest. Games and Economic Behavior 37 (1), 79–120.

Blume, A., E. K. Lai, and W. Lim (2020). Strategic information transmission: A survey of experiments and

theoretical foundations. In Handbook of Experimental Game Theory. Edward Elgar Publishing.

Cai, H. and J. T.-Y. Wang (2006). Overcommunication in strategic information transmission games. Games and

Economic Behavior 56 (1), 7–36.

Cairney, P. (2016). The Politics of Evidence-Based Policymaking. London.

Camerer, C. (1995). Individual decision making. In Handbook of Experimental Economics. Princeton University

Press.

Chen, Y. (2011). Perturbed communication games with honest senders and naive receivers. Journal of Economic

Theory 146 (2), 401–424.

Chen, Y., N. Kartik, and J. Sobel (2008). Selecting cheap-talk equilibria. Econometrica 76 (1), 117–136.

Crawford, V. P. and J. Sobel (1982). Strategic information transmission. Econometrica, 1431–1451.

Dickhaut, J. W., K. A. McCabe, and A. Mukherji (1995). An experimental study of strategic information trans-

mission. Economic Theory 6 (3), 389–403.

Epstein, L. G. (2006). An axiomatic model of non-Bayesian updating. Review of Economic Studies 73 (2), 413–436.

Eyster, E. and M. Rabin (2005). Cursed equilibrium. Econometrica 73 (5), 1623–1672.

Forges, F. (1985). Correlated equilibria in a class of repeated games with incomplete information. International

Journal of Game Theory 14 (3), 129–149.

Geller, E. S. and G. F. Pitz (1968). Confidence and decision speed in the revision of opinion. Organizational

Behavior and Human Performance 3 (2), 190–201.

Gneezy, U. (2005). Deception: The role of consequences. American Economic Review 95 (1), 384–394.

Gneezy, U., A. Kajackaite, and J. Sobel (2018). Lying aversion and the size of the lie. American Economic

Review 108 (2), 419–53.

20



Goltsman, M., J. Hörner, G. Pavlov, and F. Squintani (2009). Mediation, arbitration and negotiation. Journal of

Economic Theory 144 (4), 1397–1420.

Gordon, S. (2010). On infinite cheap talk equilibria. Working Paper.

Grether, D. M. (1978). Recent psychological studies of behavior under uncertainty. American Economic Re-

view 68 (2), 70–74.

Grether, D. M. (1992). Testing bayes rule and the representativeness heuristic: Some experimental evidence.

Journal of Economic Behavior & Organization 17 (1), 31–57.

Ivanov, M. (2010). Communication via a strategic mediator. Journal of Economic Theory 145 (2), 869–884.

Jehiel, P. and F. Koessler (2008). Revisiting games of incomplete information with analogy-based expectations.

Games and Economic Behavior 62 (2), 533 – 557.

Kahneman, D. and A. Tversky (1972). Subjective probability: A judgment of representativeness. Cognitive

Psychology 3 (3), 430–454.

Kahneman, D. and A. Tversky (1973). On the psychology of prediction. Psychological Review 80 (4), 237.

Kartik, N. (2009). Strategic communication with lying costs. Review of Economic Studies 76 (4), 1359–1395.

Kartik, N., S. Lee, and D. Rappoport (2019). Single-crossing differences on distributions. Working Paper.

Kartik, N., M. Ottaviani, and F. Squintani (2007). Credulity, lies, and costly talk. Journal of Economic the-

ory 134 (1), 93–116.

Kawamura, K. (2015). Confidence and competence in communication. Theory and Decision 78 (2), 233–259.

King, A. (2016). Science, politics and policymaking: Even though expert knowledge has become indispensible for

policymaking, providing scientific advice to governments is not always easy. EMBO reports 17 (11), 1510–1512.

Krishna, V. and J. Morgan (2004). The art of conversation: eliciting information from experts through multi-stage

communication. Journal of Economic Theory 117 (2), 147–179.

Lafky, J., E. K. Lai, and W. Lim (2022). Preferences vs. strategic thinking: An investigation of the causes of

overcommunication. Games and Economic Behavior 136, 92–116.

Melumad, N. D. and T. Shibano (1991). Communication in settings with no transfers. RAND Journal of Eco-

nomics 22 (2), 173–198.

Myerson, R. B. (2013). Game theory. Harvard University Press.

O’Donoghue, T. and M. Rabin (1999, March). Doing it now or later. American Economic Review 89 (1), 103–124.

O’Donoghue, T. and M. Rabin (2003). Studying optimal paternalism, illustrated by a model of sin taxes. American

Economic Review 93 (2), 186–191.

21



Ortoleva, P. (2012, October). Modeling the change of paradigm: Non-Bayesian reactions to unexpected news.

American Economic Review 102 (6), 2410–2436.

Ottaviani, M. and F. Squintani (2006). Naive audience and communication bias. International Journal of Game

Theory 35 (1), 129–150.

Pitz, G. F. (1969). An inertia effect (resistance to change) in the revision of opinion. Canadian Journal of

Psychology 23 (1), 24.

Pitz, G. F., L. Downing, and H. Reinhold (1967). Sequential effects in the revision of subjective probabilities.

Canadian Journal of Psychology 21 (5), 381.

Rabin, M. (1998). Psychology and economics. Journal of Economic Literature 36 (1), 11–46.

Szalay, D. (2012). Strategic information transmission and stochastic orders. Technical report, SFB/TR 15 Dis-

cussion Paper.

Wang, J. T.-y., M. Spezio, and C. F. Camerer (2010). Pinocchio’s pupil: using eyetracking and pupil dilation to

understand truth telling and deception in sender-receiver games. American Economic Review 100 (3), 984–1007.

Weible, C. M., T. Heikkila, P. deLeon, and P. A. Sabatier (2012). Understanding and influencing the policy

process. Policy Sciences 45 (1), 1–21.

Zhao, C. (2016). Representativeness and similarity. Working Paper, Princeton University.

22



Appendices for Online Publication

A Omitted Proofs

Proof of Proposition 1.

Proof. The “if” part of the first statement. Let θ∗ < 0. It follows that yS(θ) ≠ yR(θ) for all θ. Then, there exists

ε > 0 such that if y, y′ are two distinct actions induced in equilibrium, ∣y − y′∣ ≥ ε (see Crawford and Sobel (1982,

Lemma 1) for a detailed proof). Hence, N(a, b) <∞.

The “only if” part of the first statement. Now let θ∗ ≥ 0. We have [yR(0), yR(1)] ⊆ [yS(0), yS(1)]; that is, the

sender has an outward bias. See Gordon (2010, Theorem 4) for a detailed proof that if the bias is outward, there

is at least one ∞-step equilibrium.

Now, we show that (1) θ∗+b is the unique limit point of the set of equilibrium actions, and (2) θ∗ is the unique

type that separates. Note that the existence of an ∞-step equilibrium implies that θ∗ ≥ 0. We first show that (1)

θ∗ + b is the unique limit point of the set of equilibrium actions, and (2) θ∗ is the unique type that separates. Let

y(θ) be the action induced by θ in equilibrium and y be a limit point of {y(θ)}θ∈[0,1] and let {yn} ⊆ {y(θ)}θ∈[0,1] be

a monotone sequence that converges to y. For any n, there exists θn such that yS(θn) = θn+ b is in between yn and

yn+1. Otherwise, all θ ∈ [0,1] would share the same strict preference over yn and yn+1, which implies that yn and

yn+1 cannot both be induced in equilibrium. By construction, θn converges to some θ̃. It is clear that yS(θ̃) = y.

By incentive compatibility, we must have y(θ̃) = y in equilibrium. Otherwise, there always exists n such that a

sender with type θ̃ prefers yn to y(θ̃).

Now, we show that θ̃ must separate. Suppose not. Without loss of generality, assume that {θ ∶ y(θ) = y} = [θ, θ]

with θ > θ. Then, by optimality of the receiver,

y = (1 − a)γ(θ, θ) + aµ.

Then, by definition of an interval-partitional equilibrium, for all θ ∈ [0, θ) ∪ (θ,1],

y(θ) ∈ [0, (1 − a)θ + aµ) ∪ ((1 − a)θ + aµ,1].

Because p0 has a positive density everywhere, there cannot exist {yn} ⊆ {y(θ)}θ∈[0,1] such that yn → y, leading to

a contradiction. Hence, θ̃ must separate, and thus, y(θ̃) = θ̃ + b = (1 − a)θ̃ + aµ, which implies that θ̃ = θ∗. Hence,

θ∗ + b is the unique limit point of {y(θ)}θ∈[0,1] and (1) is done.

Suppose θ ≠ θ∗ separates. Then, there always exists θ′ ≠ θ such that yS(θ
′) = yR(θ). Hence, θ′ would strictly

prefer mimicking θ to sending his own equilibrium message. Thus, (2) is established.

By Theorem 5 of Gordon (2010), since there is one agreement type, the set of actions induced in equilibrium

is at most countable. By (1), there can be at most a finite number of pooling intervals in [0, θ∗ − ε] ∪ [θ∗ + ε,1],

and a countably infinite number of pooling intervals in [θ∗ − ε, θ∗ + ε] for any ε > 0. Then the proof is completed

by noting that θ∗ cannot have a non-degenerate neighboring pooling interval on either side; otherwise, types that

are very close to θ∗ have an incentive to deviate to θ∗.

Proof of Theorem 1.
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Proof. First, if θ∗ < 0, we are back to the CS world, in which the sender’s first-best action and the receiver’s

“full-information” best response do not coincide. Then, by Crawford and Sobel (1982, Lemma 3 and Theorem 3),

Condition (M) implies (i) and (ii).

If θ∗ ≥ 0, Condition (M∗) implies that for any finite n, all n-step equilibria share the same set of boundary

types and therefore are outcome equivalent. To show (i), it suffices to show that all ∞-step equilibria also share the

same set of boundary types. Let {θi}∪{θ∗}∪{θ′i} and {τi}∪{θ∗}∪{τ ′i} each characterizes an ∞-step equilibria in

the manner of Proposition 1. If τ1 ≠ θ1, by Condition (M∗), τi and θi cannot both converge to θ∗—a contradiction.

Hence, τi = θi for all i. Similarly, τ ′i = θ
′
i for all i. Hence, the two equilibria are outcome equivalent.

Now, we show that ex ante, the receiver prefers the ∞-step equilibrium to any other equilibrium. First, we will

establish a proxy for welfare. In any equilibrium, the joint distribution of action y and type θ determines welfare.

Thus, by the optimality of the receiver, the ex ante payoff of the receiver is given by

EUR = E[−(y − θ)2
]

= E[−(y −E[θ] +E[θ] − θ)2
]

= −var(y) + 2cov(y, θ) − var(θ)

= −var((1 − a)E[θ∣y] + aE[θ]) + 2cov((1 − a)E[θ∣y] + aE[θ],E[θ∣y]) − var(θ)

= (1 − a2
)var(E[θ∣y]) − var(θ)

= (1 − a2
)E[E[θ∣y]2

] − (1 − a2
)E[θ]2

− var(θ)

where expectations, variances, and covariances are taken with respect to the joint distribution of actions and types.

Clearly, EUR is increasing in E[E[θ∣y]2]. For any (finite dimensional or infinite dimensional) vector θ = (θ0, θ1, . . . )

such that θi−1 ≤ θi for all i ≥ 1, define

W (θ) =∑
i≥1

γ(θi−1, θi)
2
(F (θi) − F (θi−1)).

For any λ ∈ [0,1], let θ ∧ λ = (min{θ0, λ},min{θ1, λ}, . . . ) and θ ∨ λ = (max{θ0, λ},max{θ1, λ}, . . . ).

By Condition (M), for each finite n, any n-step equilibrium is characterized by the same set of boundary types

{θi}
n
i=0. For all such θ, we claim that

W (θ) ≤W (θ ∧ θ∗) +W (θ ∨ θ∗). (A.1)

In fact, W (θ) is the proxy for welfare in the equilibrium characterized by {θi}i≥0, while W (θ ∧ θ∗) +W (θ ∨ θ∗)

is the proxy for welfare if we insert θ∗ into the set of boundary types. To establish the claim, it suffices to show

that for any τ < τ ′ < τ ′′,

γ(τ, τ ′′)2
(F (τ ′′) − F (τ)) ≤ γ(τ, τ ′)2

(F (τ ′) − F (τ)) + γ(τ ′, τ ′′)2
(F (τ ′′) − F (τ ′))

which reads

1 ≤
x2

z
+

(1 − x)2

1 − z
,

where x = ∫
τ ′

τ θp0(dθ)

∫ τ
′′

τ θp0(dθ)
and z =

F (τ ′)−F (τ)
F (τ ′′)−F (τ) . It is easy to see that the inequality is true if z ∈ (0,1).

Now, we prove that the ∞-step equilibria Pareto-dominates any equilibrium with fewer steps. There are three
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steps to prove this. For any λ ∈ (0,1) and N ∈ Z+, a sequence {τi}
N
i=0 is a λ-forward (λ-backward) solution if it is

a forward (backward) solution to (2.2) with τ0 = 0 (τ0 = 1) and τN ≥ λ (τN ≤ λ).

Step 1: Let θ∗ > 0 and {θi} ⊆ [0, λ)∪(λ,1] be a λ-forward solution such that θ1<λ<θ
∗. Then,

dW (θ∧λ)
dθ1

< 0.

First, note by Condition (M) that W (θ ∧ λ) is completely pinned down by θ1. Additionally, note that we

exclude λ from the domain to avoid differentiability concerns when the cardinality of {θi ∧ λ} changes. This

situation does not create any problem with our analysis, because W (θ ∧ λ) is continuous in θ1. For simplicity of

exposition, let K = #{i ∶ θi < λ}. Let τi = θi for all 0 ≤ i ≤K − 1 and τK = λ. Thus, W (τ ) =W (θ ∧ λ).

dW (θ ∧ λ)

dθ1
=

dW (τ )

dτ1

=
K

∑
i=1

[2γ(τi−1, τi)
dγ(τi−1, τi)

dτ1
(F (τi) − F (τi−1)) + γ(τi−1, τi)

2
(f(τi)

dτi
dτ1

− f(τi−1)
dτi−1

dτ1
)]

=
K

∑
i=1

γ(τi−1, τi) [2
dγ(τi−1, τi)

dτ1
(F (τi) − F (τi−1)) + γ(τi−1, τi)(f(τi)

dτi
dτ1

− f(τi−1)
dτi−1

dτ1
)]

=
K

∑
i=1

γ(τi−1, τi) [(2τi − γ(τi−1, τi))f(τi)
dτi
dτ1

− (2τi−1 − γ(τi−1, τi))f(τi−1)
dτi−1

dτ1
]

=
K−1

∑
i=1

f(τi)
dτi
dτ1

[γ(τi−1, τi)(2τi − γ(τi−1, τi)) − γ(τi, τi+1)(2τi − γ(τi, τi+1))]

=
K−1

∑
i=1

f(τi)
dτi
dτ1

(γ(τi, τi+1) − γ(τi−1, τi))(γ(τi−1, τi) + γ(τi, τi+1) − 2τi),

where the second-to-last equality is due to the fact that dτ0
dτ1

=
dτK
dτ1

= 0. By {θi} is a forward solution to (2.2), for

i = 1,2,3, . . . ,K − 2,

τi = (1 − a)
γ(τi−1, τi) + γ(τi, τi+1)

2
+ aθ∗.

Additionally, by Condition (M) and θK ≥ λ,

τK−1 ≥ (1 − a)
γ(τK−2, τK−1) + γ(τK−1, λ)

2
+ aθ∗.

Condition (M) ensures that dτi
dτ1

> 0 for all 1 ≤ i ≤K − 1. Therefore,

dW (θ ∧ λ)

dθ1
≤

2a

1 − a

K−1

∑
i=1

f(τi)
dτi
dτ1

(γ(τi, τi+1) − γ(τi−1, τi))(τi − θ
∗
) < 0.

Step 2: Let {θ′i} ⊆ [0, λ)∪(λ,1] be a λ-backward solution such that θ′1>λ>θ
∗. Then

dW (θ′∧λ)
dθ′1

> 0.

The proof is symmetric to Step 1.

Step 3: Let {ηi} and {η′i} be the sequences that characterize the set of ∞-step equilibria. Then,

W (η) ≥ sup
{θi} is a θ∗-forward solution

W (θ ∧ θ∗),

W (η′) ≥ sup
{θ′i} is a θ∗-backward solution

W (θ ∨ θ∗).
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We will show the first inequality. The argument for the second is symmetric. First, if θ∗ = 0, there is nothing to

prove. Suppose θ∗ > 0. Let {θi} be an arbitrary θ∗-forward solution. Note that θ1 > η1. Otherwise, by Condition

(M), θi ≤ ηi < θ
∗ for all i—a contradiction. Let λi =

ηi+ηi+1
2 for i ≥ 1. By Step 1, W (η ∧ λi) ≥W (θ ∧ λi) for all i,

since θ1 > η1. Let i→∞; then, λi → θ∗. It follows that W (η) ≥W (θ ∧ θ∗).

Consider any N -step equilibrium {θi}
N
i=0. Clearly, {θi}

N
i=0 is a θ∗-forward solution, and {θN−i}

0
i=N is a θ∗-

backward solution. Hence,

W (θ) ≤W (θ ∧ θ∗) +W (θ ∨ θ∗) ≤W (η) +W (η′).

Hence, any ∞-step equilibrium Pareto-dominates equilibria with fewer steps.

Proof of Proposition 3.

Proof. Let f be the prior density of θ and F be the corresponding CDF. Let γ1 =
∂γ(θ,θ′)
∂θ and γ2 =

∂γ(θ,θ′)
∂θ′ . We

first establish the following lemma.

Lemma 2. If f is continuously differentiable and log-concave, then γ1(θ, θ) + γ2(θ, θ) ≤ 1 for any θ < θ.

Proof. It is clear that

γ1(θ, θ) + γ2(θ, θ) =
[θ − γ(θ, θ)]f(θ)

F (θ) − F (θ)
+

[γ(θ, θ) − θ]f(θ)

F (θ) − F (θ)
.

Thus, it suffices to show that for any θ < θ,

[θ − γ(θ, θ)]f(θ) + [γ(θ, θ) − θ]f(θ) ≤ F (θ) − F (θ). (A.2)

Let G(θ) = ∫
θ

0 F (t)dt. Intergrating by parts yields

LHS =
G(θ) −G(θ) − (θ − θ)F (θ)

F (θ) − F (θ)
f(θ) +

(θ − θ)F (θ) − [G(θ) −G(θ)]

F (θ) − F (θ)
f(θ)

=
[G(θ) −G(θ) − (θ − θ)F (θ)] (f(θ) − f(θ))

F (θ) − F (θ)
+ (θ − θ)f(θ).

Thus, inequality (A.2) reduces to

f(θ) − f(θ)

F (θ) − F (θ)
≤
F (θ) − F (θ) − (θ − θ)f(θ)

G(θ) −G(θ) − (θ − θ)F (θ)
.

Given any θ, define

g(δ) ≡ (F (θ + δ) − F (θ) − δf(θ))(F (θ + δ) − F (θ)) − (G(θ + δ) −G(θ) − δF (θ))(f(θ + δ) − f(θ)).

Clearly g(0) = 0. To show inequality (A.2), it suffices to show that g′(δ) ≥ 0 for any δ ∈ [0,1 − θ]. We have

g′(δ) = (F (θ + δ) − F (θ) − δf(θ))f(θ + δ) − (G(θ + δ) −G(θ) − δF (θ))f ′(θ + δ).

Clearly, g′(0) = 0. For δ > 0, g′(δ) ≥ 0 is equivalent to

f ′(θ + δ)

f(θ + δ)
≤
F (θ + δ) − F (θ) − δf(θ)

G(θ + δ) −G(θ) − δF (θ)
.
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By the log-concavity of f , it suffices to show that there is ξ ∈ [θ, θ + δ] such that

f ′(ξ)

f(ξ)
=
F (θ + δ) − F (θ) − δf(θ)

G(θ + δ) −G(θ) − δF (θ)
,

which is just a generalized version of the mean value theorem. Define

h(x) = (F (θ + δ) − F (θ) − δf(θ))[G(x) −G(θ) − (x − θ)F (θ)]

− (G(θ + δ) −G(θ) − δF (θ))[F (x) − F (θ) − (x − θ)f(θ)].

Then, h(θ + δ) = h(θ) = 0. By Rolle’s theorem, there is η ∈ (θ, θ + δ) such that h′(η) = 0. Thus

f(η) − f(θ)

F (η) − F (θ)
=
F (θ + δ) − F (θ) − δf(θ)

G(θ + δ) −G(θ) − δF (θ)
.

Then, by Cauchy’s mean value theorem, there is ξ ∈ (θ, η) such that

f ′(ξ)

f(ξ)
=
f(η) − f(θ)

F (η) − F (θ)

and we are done.

Now we proceed to prove Proposition 3. Let {θi}
N
i=0 and {yi}

N
i=1 solve the following system of equations, with

θi−1 < θi for all i ≥ 1:

yi = (1 − a)γ(θi−1, θi) + aµ, for i ≥ 1

θi =
yi + yi+1

2
− b, for 1 ≤ i < N.

By definition, {θi} is a forward solution to (2.2).

Given θi−1, θi determines yi through the first equation, which in turn determines yi+1 through the second

equation and then θi+1 through the first equation. Differentiating the first equation with respect to yi, the second

equation with respect to θi yields

1

1 − a
= γ1(θi−1, θi)

dθi
dyi

+ γ2(θi−1, θi)
dθi−1

dyi
, for i ≥ 1; (A.3)

2 =
dyi
dθi

+
dyi+1

dθi
, for 1 ≤ i < N. (A.4)

By Lemma 2, dθ0
dy1

= 0 implies dθ1
dy1

> 1. It follows that dθ1
dy2

< 1 and, hence, dθ2
dy2

> 1. Inductively, dθi
dyi

≥ 1 and dyi
dθi−1

≥ 1

for any i ≥ 2. It follows that dθi
dθ1

≥ 1 for any i ≥ 1, which implies Condition (M∗) with ε = τ̄1 − τ̂1.

Proof of Proposition 4.

Proof. In any equilibrium, the joint distribution of action y and type θ determines welfare. Furthermore, from the

proof of Theorem 1, we know that

EUR(a, b) = (1 − a2
)var(E[θ∣y]) − var(θ) =

1 + a

1 − a
var(y) − var(θ).
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in which the expectation and the variances are taken with respect to the joint distribution of actions and types in

the N(a, b)-step equilibrium. By Proposition 1, it is clear that var(y) > 0 in any ∞-step equilibrium. Hence, for

any b ∈ (0, µ), we always have EUR(
b
µ , b) =

µ+b
µ−bvar(y) − var(θ) > −var(θ).

The second step is to show that EUR(0, b) = −var(θ) for any b ∈ [
µ
2 , µ). For any θ ∈ [0,1], define

V (θ) ≡
γ(0, θ) + γ(θ,1)

2
− θ.

Clearly, V (0) =
µ
2 and V (1) =

µ−1
2 . Furthermore, V (θ) is continuously differentiable, since γ is continuously

differentiable. Log-concavity of the density function ensures that γ1(θ, θ
′) + γ2(θ, θ

′) ≤ 1 for any θ < θ′. Hence,

γi(θ, θ
′) < 1 for any i ∈ {1,2} and θ < θ′. Thus,

V ′
(θ) =

γ2(0, θ) + γ1(θ,1)

2
− 1 < 0.

It then follows that V (θ) < µ
2 for any θ ∈ (0,1]. Since V (0, θ, θ′∣0, b) ≤ V (θ)− µ

2 < 0 for any θ < θ′ and b ∈ [
µ
2 , µ), we

conclude that only the babbling equilibrium exists in standard cheap talk when b ∈ [
µ
2 , µ), and thus EUR(0, b) =

−var(θ) when b ∈ [
µ
2 , µ).

Note that log-concavity ensures that the original monotonicity condition in Crawford and Sobel (1982), i.e.

Condition (M) with a = 0, is satisfied. Let θ̂ be the unique solution to γ(θ,1) = 2θ and let b̂ = γ(0, θ̂)/2. Clearly,

θ̂ < µ
2 . Furthermore,

V (0,0, θ̂∣0, b̂) = V (0, θ̂,1∣0, b̂) = 0.

Hence when b ∈ (b̂, µ2 ), the most informative equilibrium in standard cheap talk features two pooling intervals.

Therefore, for any b ∈ (b̂, µ2 ),

EUR(0, b) = −F (θ)(γ(0, θ) − µ)2
− (1 − F (θ))(γ(θ,1) − µ)2

− var(θ)

in which θ satisfies V (θ) = b. Since V is strictly decreasing and continuously differentiable, by the implicit function

theorem, it is clear that EUR(0, b) is continuous at b = µ
2 .

Similarly, log-concavity ensures that the welfare in any n-step equilibrium when a = b
µ , denoted as EUn

R(
b
µ , b),

is continuous in b for any finite n. Note that since θ∗ = 0, by Theorem 2 in Gordon (2010) and Proposition 1, an

n-step equilibrium always exists for any n ∈ Z+ along the path. Thus, since EUR(
1
2 ,

µ
2 ) > EUR(0,

µ
2 ), there exists

n ∈ Z+ such that EUn
R(

1
2 ,

µ
2 ) > EUR(0,

µ
2 ). The claim is then established by noting that EUn

R(
b
µ , b) − EUR(0, b) is

continuous in b at b = µ
2 and applying Theorem 1.

Proof of Theorem 2.

Proof. Consider an arbitrary equilibrium. Without loss of generality, assume that the equilibrium messages are

simply recommended actions. Let yB ≡ E[θ∣y], which is the Bayesian response to recommendation y. Note that

y = (1 − a)yB + aE[θ], which implies that E[y] = E[θ]. We also know that

cov(E[y∣θ], θ) = cov(y, θ) = cov(E[θ∣y], y) = cov(yB, y).
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Thus, from the receiver’s point of view,

EUR = E[−(y − θ)2
] = −var(y) + 2cov(y, θ) − var(θ) = (1 − a2

) ⋅ var(yB) −
1

12
. (A.5)

On the other hand, from the sender’s point of view, by the envelope theorem,

EUR = EUS + b
2

= IUS(0) + 2∫
1

0
E[y∣θ](1 − θ − b)dθ + b2 −

1

3
(A.6)

= IUS(0) − 2∫
1

0
E[y∣θ]θdθ + 1 − b + b2 −

1

3
(A.7)

= IUS(0) − 2(1 − a)var(yB) − b + b2 +
1

6
. (A.8)

See Goltsman et al. (2009) for the detailed argument behind equation (A.6). It follows from equations (A.5) and

(A.8) that

EUR =
1 + a

3 + a
[IUS(0) + (

1

2
− b)

2

] −
1

12
. (A.9)

Now, let a = 2b. By Proposition 1, N(a, b) =∞ and type 0 separates in the ∞-step equilibrium. It is clear that

in this case, IUS(0) = 0, which implies that

EUR(2b, b) =
1 + 2b

3 + 2b
(

1

2
− b)

2

−
1

12
>

1

3
(

1

2
− b)

2

−
1

12
= EUB

R(b).

Now, it suffices to show that EUR(a, b) is continuous in a at a = 2b.

We first show that lima↓2bEUR(a, b) = EUR(2b, b). For any a > 2b, it is clear that θ∗ > 0, and thus, N(a, b) =∞.

By Proposition 8 in Appendix C, in any ∞-step equilibrium, we have

θ1 = (
1

2
−
b

a
)(

2
√
a

1 +
√
a
) ,

Thus,

IUS(0) = −((1 − a) (
1

2
−
b

a
)(

√
a

1 +
√
a
) +

a

2
− b)

2

= −a(
1

2
−
b

a
)

2

,

which goes to 0 as a ↓ 2b. It follows from (A.9) that lima↓2bEUR(a, b) = EUR(2b, b).

Then, we show that lima↑2bEUR(a, b) = EUR(2b, b). When a < 2b, we have N(a, b) < ∞. In the N(a, b)−step

equilibrium, by Proposition 7 in Appendix C,

θ1 =
(1 − θ∗)(α1 − α−1) − θ∗(αN(a,b)−1 − α1−N(a,b))

αN(a,b) − α−N(a,b) + θ∗.

in which α =
1+√a
1−√a and N(a, b) is the largest integer such that

−α − 1

αn + α1−n − α − 1
< θ∗.

It follows that

N(a, b) = ⌈logα
(α + 1)(1 − θ∗) +

√
(α + 1)2(1 − θ∗)2 − 4αθ∗2

−2θ∗
− 1⌉.

It is clear that lima↑2bN(a, b) =∞, and thus, lima↑2b θ1 = 0. It follows that lima↑2b IUS(0) = 0, and thus, EUR(a, b)

29



is continuous in a at a = 2b. In fact, it is easy to see that EUR(a, b) is continuous in a for any a ∈ (0,1).

Proof of Lemma 1.

Proof. By the properties of the conditional expectation and the fact that E[X ∣Z] = Z, we have

E[X1Z≤t] = E[Z1Z≤t]

for any t ∈ R. It then follows that

E[Z1X≤t] −E[X1X≤t] = E[Z1X≤t] −E[X1X≤t] −E[Z1Z≤t] +E[X1Z≤t]

= E[(Z −X)(1X≤t − 1Z≤t)] ≥ 0

for all t ∈ R, since (Z −X)(1X≤t − 1Z≤t) is always nonnegative.

Proof of Theorem 3.

Proof. We first prove the case when θ∗ ≥ 0. Consider the following envelope condition implied by (ICS):

IUS(θ
∗
) = IUS(0) + ∫

θ∗

0
2(Eν[y∣θ] − (θ + b))dθ. (A.10)

Now, let yB ≡ Eν[θ∣y], the Bayesian response to recommendation y. Since Eν[θ∣yB] = yB, Lemma 1 implies that

∫

θ∗

0
Eν[yB ∣θ]dθ = Eν[yB1θ≤θ∗] ≥ Eν[θ1θ≤θ∗] = ∫

θ∗

0
θdθ. (A.11)

Combining inequality (A.11), equation (A.10), and y = (1 − a)yB + a ⋅
1
2 yields

IUS(θ
∗
) − IUS(0) ≥ ∫

θ∗

0
2a(θ∗ − θ)dθ. (A.12)

By IUS(θ
∗) ≤ 0,

IUS(0) ≤ −∫
θ∗

0
2a(θ∗ − θ)dθ.

Note that equation (A.9) also holds with mediation. Hence,

EUR ≤
1 + a

3 + a
[(

1

2
− b)

2

− 2a∫
θ∗

0
(θ∗ − θ)dθ] −

1

12

=
1 + a

3 + a
[(

1

2
− b)

2

− aθ∗2
] −

1

12

=
1 − a2

3 + a
(

1

4
−
b2

a
) −

1

12
, (A.13)

in which the maximum of EUR is attained if and only if (i) IUS(θ
∗) = 0, and (ii) inequality (A.11) is binding. The

proof of Lemma 1 implies that (A.11) is binding if and only if

(yB − θ)(1θ≤θ∗ − 1yB≤θ∗) = 0 almost surely,
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which is equivalent to

1θ≤θ∗ = 1yB≤θ∗ almost surely. (A.14)

Then, (ii) is a direct consequence of (A.14) and y = (1 − a)yB + aµ.

Now, suppose θ∗ < 0. This case is similar to Goltsman et al. (2009). First note that condition (ii) is automat-

ically satisfied. Second, by equation (A.9) and IUS(0) ≤ 0,

EUR ≤
1 + a

3 + a
(b −

1

2
)

2

−
1

12
. (A.15)

The inequality above is binding if and only if IUS(0) = 0. It suffices to show that IUS(0) = 0 is possible whenever
a
2 < b < 1

2 , which is given by Proposition 10 in Appendix E.

Proof of Theorem 4.

Proof. When b ∈ (0, a2 ], it suffices to show that the N(a, b)-step equilibrium exactly achieves the upper bound

given in (A.13). Recall that in any interval-partitional equilibrium of the direct-talk game,

EUR =
1 + a

3 + a
[IUS(0) + (

1

2
− b)

2

] −
1

12
.

By Proposition 8, θ1, the first cutoff in any ∞-step equilibrium, is θ∗(1−α−1). Hence, the welfare of the ∞-step

equilibrium is given by

EUR =
1 + a

3 + a

⎡
⎢
⎢
⎢
⎢
⎣

− [(1 − a)
θ∗(1 − α−1)

2
+ aθ∗]

2

+ (
1

2
− b)

2⎤⎥
⎥
⎥
⎥
⎦

−
1

12
(A.16)

=
1 + a

3 + a
[(

1

2
− b)

2

− a(
1

2
−
b

a
)

2

] −
1

12

=
1 − a2

3 + a
(

1

4
−
b2

a
) −

1

12
.

When b ∈ (a2 ,
1
2), it suffices to show that the welfare bound given by (A.15) cannot be achieved by direct talk.

By Theorem 3, the welfare bound is achieved if and only if IUS(0) = 0. Thus, in order to achieve the bound, action

b must be induced by the first interval in the equilibrium. By equation (C.1), in an n-step equilibrium,

θ1 =
(1 − θ∗)(α − α−1) − θ∗(αn−1 − α1−n)

αn − α−n
+ θ∗, (A.17)
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in which α =
1+√a
1−√a and θ∗ = 1

2 −
b
a . Thus,

y1 − b =
(1 − a)θ1

2
+
a

2
− b

=
(1 − a)(1 − θ∗)(α − α−1)

2(αn − α−n)
+

(1 − a)θ∗(αn − α−n − αn−1 + α1−n)

2(αn − α−n)
+ aθ∗

=
(1 − a)(1 − θ∗)(α − α−1)

2(αn − α−n)
+

(1 − a)θ∗(αn−1 + α−n)(α − 1)

2(αn − α−n)
+ aθ∗

=
(1 − a)(1 − θ∗)(α − α−1)

2(αn − α−n)
+

√
a(1 +

√
a)θ∗(αn−1 + α−n)

αn − α−n
+ aθ∗

=
(1 − a)(1 − θ∗)(α − α−1)

2(αn − α−n)
+

√
aθ∗(αn−1 + α−n)

αn − α−n
+
aθ∗(αn−1 + α−n)

αn − α−n
+ aθ∗

=
(1 − a)(1 − θ∗)(α − α−1)

2(αn − α−n)
+

√
aθ∗(αn−1 + α−n)

αn − α−n
+
aθ∗(αn−1 + αn)

αn − α−n
> 0,

since a < 1, θ∗ < 0, and α > 1. Hence, in any equilibrium of the direct-talk game, the welfare bound cannot be

achieved if b > a
2 .

Proof of Proposition 5.

Proof. It is clear from the proof of Theorem 2 that EUR = (1 − a2) ⋅ var(yB) − var(θ). Now consider EU∗
R. We

have

EU∗
R = (1 − a)EUR + aEq′[−(ρ(m) − θ)2

],

where q′ ≡ p0(θ) ∫Θ p(m,dθ). Hence,

EU∗
R = (1 − a)[(1 − a2

) ⋅ var(yB) − var(θ)] + a[−var(y) − var(θ)]

= (1 + a)(1 − a)2
⋅ var(yB) − a ⋅ (1 − a)2var(yB) − var(θ)

= (1 − a)2var(yB) − var(θ),

where the second equality follows from y = (1 − a)yB + aµ.

Thus,

(EU∗
R + var(θ))

1 + a

1 − a
= EUR + var(θ),

and Proposition 5 follows.

B The NITS Criterion

For the purpose of equilibrium refinement, Chen et al. (2008) propose the no-incentive-to-separate (hereafter NITS)

condition, which requires that the worst type does not want to deviate by separating himself. In this section, we

show that generically, only the most informative equilibrium survives the NITS refinement. Our notion differs

slightly from the original NITS condition, in that the worst type in our setting may not always be type 0. More

precisely, a type θ ∈ [0,1] is said to be worst if US(yR(θ
′), θ′) ≥ US(yR(θ), θ

′) for any θ′ ∈ [0,1]; that is, θ is a

worst type if no other type has strict incentive to mimic θ. Hence, when θ∗ ≥ 0, the unique worst type is θ∗.

32



Definition. An equilibrium {σ, ρ} satisfies the NITS condition if US(ρ(σ(θ)), θ) ≥ US(yR(θ), θ) for any worst

type θ.

The following proposition shows that under mild assumptions on the prior, generically, only the most infor-

mative equilibrium satisfies the NITS condition.

Proposition 6. If p0 has continuously differentiable and log-concave density, then given generic values of a and

b, an interval-partitional equilibrium satisfies the NITS condition if and only if it is an N(a, b)-step equilibrium.

Proof. First, note that max{0, θ∗} is the unique worst type of the game. If θ∗ < 0, then Proposition 3 in Chen

et al. (2008) applies. Henceforth, we will assume that θ∗ ≥ 0. Fix finite N and 1 ≤ k ≤ N . Given a ∈ (0,1), let

{θi}
N
i=0 satisfy the following system of equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi = (1 − a)
γ(θi−1,θi)+γ(θi,θi+1)

2 + aθ∗, for 1 ≤ i ≤ N − 1,

θ0 = 0,

θn = 1,

γ(θk−1, θk) = θ
∗.

If the fourth equation holds, in the interval partitional equilibrium characterized by {θi}
N
i=0, the equilibrium message

of type θ∗ exactly induces the action (1 − a)θ∗ + aµ = θ∗ + b, which implies that a sender of type θ∗ does not have

an incentive to separate. Substituting the fourth equation into the first yields

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θi = (1 − a)
γ(θi−1,θi)+γ(θi,θi+1)

2 + aγ(θk−1, θk), for 1 ≤ i ≤ N − 1,

θ0 = 0,

θn = 1.

(B.1)

Let M ⊆ (0,1)N−1 be the set of all increasing sequences in (0,1)N−1. Define f ∶M → RN−1 as follows:

fi(τ1, τ2, . . . , τN−1) = (1 − a)
γ(τi−1, τi) + γ(τi, τi+1)

2
+ aγ(τk−1, τk)

for any τ ≡ (τ1, τ2, . . . , τN−1) ∈M where τ0 = 0 and τN = 1. It is clear that any solution to (B.1) is a fixed point of

f . Note that f(τ) ∈M if τ ∈M , since the γ function is increasing in both arguments.

We will show that f has at most one fixed point in M . It then follows that (B.1) can have at most one solution

in M . Thus, for any a ∈ (0,1), there exists at most a countable number of θ∗s such that type θ∗ has no incentive

to separate in an equilibrium with finite steps. The proof is then completed by noting that θ∗ depends only on a

and b.

To show that f has at most one fixed point in M , we first show the following lemma.

Lemma 3. If p0 has continuously differentiable and log-concave density, then x1 < x2 and y1 < y2 implies that

∣γ(x1, x2) − γ(y1, y2)∣ ≤ max{∣x1 − y1∣, ∣x2 − y2∣},

where equality is achieved only if x1 − y1 = x2 − y2.
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Proof. WLOG assume that γ(x1, x2) − γ(y1, y2) ≥ 0. Let ε = max{x1 − y1, x2 − y2}. If γ is strictly increasing in

both arguments, ε ≥ 0. If ε = 0, then x1 = y1 and x2 = y2. In this case, clearly the lemma holds. Now suppose ε > 0.

Note that

γ(x1, x2) − γ(y1, y2) ≤ γ(y1 + ε, x2) − γ(y1, x2 − ε),

where equality is achieved if and only if ε = x1 − y1 = x2 − y2. Note that by construction, x2 > y1 + ε and x2 − ε > y1.

If p0 has continuously differentiable and log-concave density, by (A.2), for any x < y, we have
∂γ(x,y)
∂x +

∂γ(x,y)
∂y ≤ 1.

By the mean value theorem, if ε > 0, then

γ(y1 + ε, x2) − γ(y1, x2 − ε)

ε
≤ 1,

which implies that

γ(x1, x2) − γ(y1, y2) ≤ ε.

If equality is achieved, then ε = x1 − y1 = x2 − y2.

Suppose τ, θ ∈M are distinct fixed points of f . Then

max
i

∣fi(τ) − fi(θ)∣

= max
i

∣(1 − a)
γ(τi−1, τi) + γ(τi, τi+1)

2
+ aγ(τk−1, τk) − (1 − a)

γ(θi−1, θi) + γ(θi, θi+1)

2
− aγ(θk−1, θk)∣

≤ max
i

∣(1 − a)
max{∣τi−1 − θi−1∣, ∣τi − θi∣} +max{∣τi − θi∣, ∣τi+1 − θi+1∣}

2
∣ + amax{∣τk−1 − θk−1∣, ∣τk − θk∣}

≤ max
i

∣τi − θi∣

= max
i

∣fi(τ) − fi(θ)∣.

To achieve equality, we must have

∣γ(τk−1, τk) − γ(θk−1, θk)∣ = max{∣τk−1 − θk−1∣, ∣τk − θk∣} = max
i

∣τi − θi∣,

which implies that τk−1 − θk−1 = τk − θk. WLOG assume that τk − θk ≡ ε > 0. Then, maxi ∣τi − θi∣ = ε.

By f(τ) − f(θ) = τ − θ,

(1 − a)
γ(τk−1, τk) + γ(τk, τk+1)

2
+ aγ(τk−1, τk) − (1 − a)

γ(θk−1, θk) + γ(θk, θk+1)

2
− aγ(θk−1, θk) = τk − θk.

It follows that

γ(τk−1, τk) + γ(τk, τk+1)

2
−
γ(θk−1, θk) + γ(θk, θk+1)

2
= ε

γ(τk, τk+1) − γ(θk, θk+1) = ε

= max{∣τk − θk∣, ∣τk+1 − θk+1∣}.

It follows that τk+1−θk+1 = τk−θk = ε. Inductively, τn−θn = ε for all k ≤ n ≤ N −1. However, by fN−1(τ)−fN−1(θ) =
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τN−1 − θN−1, one has

γ(τN−2, τN−1) + γ(τN−1,1)

2
−
γ(θN−2, θN−1) + γ(θN−1,1)

2
= ε

γ(τN−1,1) − γ(θN−1,1) = ε

= max{∣τN−1 − θN−1∣,0},

which implies that τN−1 − θN−1 = 0, is a contradiction. Hence, f can have at most one fixed point.

C Equilibria Characterization in the Uniform Case

We first characterize the set of finite interval-partitional equilibria. Let the set of pooling intervals in equilibrium

be {[θi−1, θi]}
n
i=1, where 0 = θ0 < θ1 < ⋯ < θn = 1, and let yi be the induced action for θ ∈ (θi−1, θi). Unimodality of

the utility function ensures that y1 < y2 < ⋯ < yn.

Proposition 7. For n ∈ Z+, the following set of equations characterizes an n-step equilibrium if and only if

θ∗ > θ(n):

θi =
(1 − θ∗)(αi − α−i) − θ∗(αn−i − αi−n)

αn − α−n
+ θ∗ for i = 0,1,2, . . . , n, (C.1)

in which α =
1+√a
1−√a , θ∗ = 1

2 −
b
a , and θ(n) = −α−1

αn+α1−n−α−1
.

Proof. In the uniform case, (2.2) reduces to

θi+1 =
2 + 2a

1 − a
θi − θi−1 +

4b − 2a

1 − a
(C.2)

The characteristic function of the second-order difference equation given by (C.2) is

x2
−

2 + 2a

1 − a
x + 1 = 0.

By a ∈ (0,1), the characteristic function has two real roots: 1+√a
1−√a and 1−√a

1+√a . Hence, for all i,

θi = c(
1 +

√
a

1 −
√
a
)

i

+ c′ (
1 −

√
a

1 +
√
a
)

i

+
1

2
−
b

a
.

Equation (C.1) then follows from the fact that θ0 = 0 and θn = 1.

To show that {θi}
n
i=0 to characterize an n−step equilibrium, we need to verify only that θi < θi+1 for all i. Let

f(i) = (1 − θ∗)(αi − α−i) − θ∗(αn−i − αi−n). Then,

f ′(i)∝ (1 − θ∗ + θ∗α−n)α2i
+ (1 − θ∗ + θ∗αn).

By θ∗ ≤ 1
2 and α > 1, the coefficient of α2i is always positive. If θ∗ > 1

1−αn , f ′(i) is always positive, and hence,

{θi}
n
i=1 characterizes an equilibrium. If θ∗ ≤ 1

1−αn , we only need θ1 > 0. Hence,

(1 − θ∗)(α − α−1) − θ∗(αn−1 − α1−n)

αn − α−n
+ θ∗ > 0, (C.3)
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which reads θ∗ > θ(n).

It is easy to verify that θ(n) < 1
1−αn . Therefore, equation (C.1) characterizes an n-step equilibrium if and only

if θ∗ > θ(n). The induced actions in any n−step equilibrium can differ only at each θi, so all n−step equilibria are

outcome equivalent. The “only if” direction is trivial.

Now, we characterize the ∞-step equilibrium.

Proposition 8. If θ∗ = 1
2 −

b
a ≥ 0, i.e., b ≤ a

2 , then any ∞-step equilibrium is characterized by the set of boundary

types {θi}
∞
i=0 ∪ {θ∗} ∪ {θ′i}

∞
i=0 in which θi = θ

∗(1 − α−i) and θ′i = θ
∗ + (1 − θ∗)α−i.

Proof. Let {σ, ρ} be a ∞-step equilibrium. By Proposition 1, θ∗ is the unique type that separates. Moreover,

the action induced by θ∗ is the unique limit point of the set of induced actions. It follows that the set of actions

induced in an ∞-step equilibrium is countable.

We first show that for any ε > 0, infinitely many actions are induced within (y(θ∗), y(θ∗) + ε). Suppose there

exists a small ε > 0 such that no action is induced within (y(θ∗), y(θ∗)+ε). Then, consider a sender of type θ∗+ε/2.

Quadratic utility implies that the sender must prefer y(θ∗) to any other induced actions, which is contradictory

to the fact that θ∗ separates. Similarly, when θ∗ > 0, for any ε > 0, infinitely many actions are induced within

(y(θ∗) − ε, y(θ∗)). Hence, we can assume WLOG that {y(θ)}θ∈[0,1] = {yi}
∞
i=1 ∪ {y(θ∗)} ∪ {y′i}

∞
i=1 where yn ↑ y(θ

∗)

and y′n ↓ y(θ
∗).

Let θ0 = 0 and θi be such that the sender type is indifferent between yi and yi+1. Then, equation (C.2) holds

for any integer i ≥ 1. The set of solutions is given by

θi = cα
i
+ c′α−i + θ∗ (C.4)

for some constants c, c′. We know that θ0 = 0 and θi → θ∗. It follows that θi = θ
∗(1 − α−i).

Let θ′0 = 1 and θ′i be such that the sender type is indifferent between y′i and y′i+1. Still,

θ′i = cα
i
+ c′α−i + θ∗

for some constants c and c′. We know θ′0 = 1 and θ′i → θ∗. Thus, θ′i = (1 − θ∗)α−i + θ∗.

Now, it suffices to verify that the sender with type θ∗ does not want to deviate, which is clear since y(θ∗) is

the most preferred action for type θ∗.

D Welfare Results for Close-to-Uniform Distributions

Let f be the prior density of θ and F be the corresponding CDF. Consider the differential equation

1 − F (θ)

f(θ)
= γθ + δ

for some γ, δ ∈ R. When θ = 1, γθ + δ = 0, which implies that γ = −δ. Thus, at any θ ∈ (0,1),

d ln(1 − F (θ))

dθ
=

1

γ(1 − θ)
.
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Since 1 − F (θ) is strictly decreasing in θ, we need γ < 0. Thus,

ln(1 − F (θ)) = −
1

γ
ln(γ(θ − 1)) + c

which implies that 1 − F (θ) = (1 − θ)
− 1
γ . Let β = − 1

γ . We have that f(θ) = β(1 − θ)β−1 with β > 0, which is indeed

a Beta distribution with α = 1.

Proposition 9. Given any b ∈ (0, µ) and β > 0, there exists ε > 0 such that 1−θ
β − ε ≤

1−F (θ)
f(θ) ≤ 1−θ

β + ε for any

θ ∈ [0,1] implies EUR(
b
µ , b) > EUB

R(b).

Proof. Consider the class of distributions such that 1−θ
β − ε ≤

1−F (θ)
f(θ) ≤ 1−θ

β + ε for some β, ε > 0. One one hand, it

is clear from the proof of Theorem 2 that

EUR = (1 − a2
)var(y0) − var(θ). (D.1)

On the other hand, a similar argument to Lemma 3 of Goltsman et al. (2009) yields

EUR = IUS(0) + 2∫
1

0
E[y∣θ](1 − F (θ) − bf(θ))dθ −E[θ2

] + b2. (D.2)

Hence,

EUR = IUS(0) + 2∫
1

0
E[y∣θ] (

1 − F (θ)

f(θ)
− b) f(θ)dθ −E[θ2

] + b2. (D.3)

Observe that

IUS(0) + 2∫
1

0
E[y∣θ] (

1 − θ

β
− b) f(θ)dθ −E[θ2

] + b2

= IUS(0) −
2

β
E[yθ] + 2(

1

β
− b)µ −E[θ2

] + b2

= IUS(0) −
2

β
(cov(y, θ) + µ2

) + 2(
1

β
− b)µ −E[θ2

] + b2

= IUS(0) −
2

β
((1 − a)var(y0) + µ

2
) + 2(

1

β
− b)µ −E[θ2

] + b2

= IUS(0) −
2(1 − a)

β
var(y0) − var(θ) + ĝ(µ,β, b)

= IUS(0) −
2(1 − a)

β
(

EUR + var(θ)

1 − a2
) − var(θ) + ĝ(µ,β, b)

= IUS(0) −
2

β
(

EUR + var(θ)

1 + a
) − var(θ) + ĝ(µ,β, b)

in which ĝ(µ,β, b) = −2+β
β µ2 + 2 ( 1

β − b)µ + b
2. Hence,

β(1 + a)

2 + β(1 + a)
[IUS(0) + ĝ(µ,β, b) − 2µε] − var(θ) ≤ EUR ≤

β(1 + a)

2 + β(1 + a)
[IUS(0) + ĝ(µ,β, b) + 2µε] − var(θ).

Note that

(
1 − θ

β
− ε) f(θ) ≤ 1 − F (θ) ≤ (

1 − θ

β
+ ε) f(θ).
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Integrating over [0,1] yields
1 − µ

β
− ε ≤ µ ≤

1 − µ

β
+ ε.

It is easy to see that as ε→ 0, µ→ 1
1+β , and ĝ(µ,β, b)→ (b − 1

1+β )
2. Thus

lim
ε→0

EUR(a, b) =
(1 + a)β

2 + (1 + a)β
[IUS(0) + (b −

1

1 + β
)

2

] − var(θ).

The function g1(a) − g2(a) in our argument corresponds to
(1+a)β

2+(1+a)β , which is strictly increasing in a. Clearly

lim
ε→0

[EUR(b/µ, b) −EUB
R(b)] ≥ (

(1 + b/µ)β

2 + (1 + b/µ)β
−

β

2 + β
)(b −

1

1 + β
)

2

> 0

and we are done.

E Optimal Mediation Rule when b ∈ (a2, 1
2)

Proposition 10. For any b ∈ (a2 ,
1
2), the following mediation rule is optimal: When θ ∈ [0, θ1], the mediator

recommends action b. For i = 2, . . . , n, when θ ∈ (θi−1, θi], with probability π, he recommends action b, and with

probability 1 − π he recommends action (1 − a) θi−1+θi2 + a
2 , where

θ0 = 0, θ1 =
(α − 1)[2 + θ∗(αn−1 + α1−n − 2)]

2(αn − α1−n)
,

θi =
(1 − θ∗)(αi−1 − α1−i) + (θ1 − θ

∗)(αn−i − αi−n)

αn−1 − α1−n + θ∗, i = 2, . . . , n,

π = 1 −
1 − 2b

(1 − θ1)(1 − a)

and n such that

logα (1 −
1 +

√
1 − 2θ∗

θ∗
) ≤ n ≤ logα (1 −

1 +
√

1 − 2θ∗

θ∗
) + 1

in which α =
1+√a
1−√a and θ∗ = 1

2 −
b
a .

Proof. Our construction is similar in spirit to the optimal mediation rule in Goltsman et al. (2009): The mediator

recommends action b for the interval containing type 0 and randomizes between b and another action for other

intervals.

First, b should be the recommended action for the first interval. Thus,

b = (1 − a) ((1 − π)
θ1

2
+
π

2
) +

a

2
.

Let δ ≡ 1 − (1 − a)(1 − π). The above equation reads

θ1 =
2b − δ

1 − δ
.
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ICS for θ1 and ICR for y2 together imply

θ1 =
b + (1 − a) θ1+θ22 + a

2

2
− b,

which reads

(3 + a)θ1 = (1 − a)θ2 + 2aθ∗. (E.1)

Note that by construction {θi}i≥1 must be a forward solution to (2.2). Thus, there exist c, c′ ∈ R such that

θi = cα
i−1

+ c′α1−i
+ θ∗.

Given θ1 and θn = 1, we have
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

c + c′ = θ1 − θ
∗

cαn−1 + c′α1−n = 1 − θ∗,

which yields
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

c =
1−θ∗−(θ1−θ∗)α1−n

αn−1−α1−n

c′ = −1+θ∗+(θ1−θ∗)αn−1
αn−1−α1−n .

Thus,

θ2 = (1 − θ∗)
α − α−1

αn−1 − α1−n + (θ1 − θ
∗
)
αn−2 − α2−n

αn−1 − α1−n + θ
∗. (E.2)

Combining equations (E.1) and (E.2) yields

2
√
a

αn−1 − α1−n (1 − θ
∗
) −

√
a(αn−1 + α1−n)

αn−1 − α1−n (θ1 − θ
∗
) = θ1. (E.3)

Hence,

θ1 =
2b − δ

1 − δ
=

√
a(2(1 − θ∗) + θ∗(αn−1 + α1−n))

αn−1 − α1−n +
√
a(αn−1 + α1−n)

,

which yields

1 − δ = (1 − 2b)
αn−1 − α1−n +

√
a(αn−1 + α1−n)

αn−1 − α1−n +
√
a(1 − θ∗)(αn−1 + α1−n − 2)

. (E.4)

To ensure that {θi}
n
i=0 is an equilibrium, first, we need δ ≤ 2b—which, by equation (E.4), implies that

θ∗(αn−1
+ α1−n

) + 2(1 − θ∗) ≥ 0,

which yields

αn−1
≤ 1 −

1 +
√

1 − 2θ∗

θ∗
, (E.5)
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since θ∗ < 0 and α > 1. Second, we also need δ ≥ a, which requires

(1 − 2b)
αn−1 − α1−n +

√
a(αn−1 + α1−n)

αn−1 − α1−n +
√
a(1 − θ∗)(αn−1 + α1−n − 2)

≤ 1 − a

θ∗ (αn−1 2
√
a

1 −
√
a
− α1−n 2

√
a

1 +
√
a
) ≤ −2 − θ∗(αn−1

+ α1−n
− 2)

θ∗ (αn−1
(α − 1) + α1−n

(α−1
− 1)) ≤ −2 − θ∗(αn−1

+ α1−n
− 2)

θ∗ (αn + α−n) + 2(1 − θ∗) ≤ 0.

Since θ∗ < 0, the inequality above yields

αn ≥ 1 −
1 +

√
1 − 2θ∗

θ∗
. (E.6)

Combining inequalities (E.4) and (E.6) yields

logα (1 −
1 +

√
1 − 2θ∗

θ∗
) ≤ n ≤ logα (1 −

1 +
√

1 − 2θ∗

θ∗
) + 1. (E.7)

Then, it is easy to verify that our construction in the proposition is indeed a feasible mediation rule.
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