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Abstract

We introduce strategic reporting in Bayesian persuasion. A sender conducts an experiment to
acquire information to influence a receiver’s action. After committing to an experiment, the sender
privately observes its realized result and strategically reports a message. This reporting incurs a
cost that depends on the realized result and the message reported and exhibits strictly decreasing
differences. We develop a methodology to characterize the optimal experiment choice for the sender
and provide a sufficient condition for the sender to choose an experiment whose results cannot be
fully revealed to the receiver through reporting. Finally, we find that the sender may ex ante strictly
prefer strategic reporting over fully committing to truthful reporting if truthful reporting, which
incurs the minimum reporting cost for any realized result, is costly.
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1 Introduction

Since Kamenica and Gentzkow (2011), the Bayesian persuasion literature has studied how a sender
(she) persuades a receiver (he) by designing an experiment, which is a rule for acquiring information,
under the assumption that the sender is fully committed to faithfully executing the experiment and to
truthfully reporting the result of the experiment. This setting is useful in situations where information
transmission is mandatory, such as prosecutors providing evidence, central banks providing economic
data, and so on. On this basis, we want to further explore how the sender designs an experiment when
it is not possible to guarantee that the obtained result will be fully revealed at zero cost. Specifically, we
consider a scenario in which the sender commits to implementing an experiment and can strategically
report its result by sending a message at a certain cost.

The information design problem that precedes strategic and costly reporting has significant economic
implications. In reality, numerous organizations gather information under supervision or through public
platforms, but how they transmit the information they obtain is associated with the reporting cost that
depends on the market environment. For instance, before an open investigation, research institutions
often publicly announce their research protocols, including sample sizes and methodologies. After
obtaining a result, they may exaggerate it at the expense of integrity. Similarly, when producers build
platforms to collect consumer opinions, they may fabricate positive comments if negative reviews emerge
and promote consumers’ unanimous praise through advertising otherwise.

To study this problem, we build a model that incorporates Bayesian persuasion and costly signaling.
We investigate how the sender’s incentive to reveal a result through strategic reporting affects informa-
tion design. How does the sender design an optimal experiment ex ante to induce the most beneficial
signaling game? Will the sender design an experiment whose results cannot be fully revealed through
strategic reporting? We address these central questions in the following model.

We consider a model with two states, low and high. The realization of the state is unknown to
both players. The sender always prefers a higher action while the receiver wants to take an action
contingent on the state. To acquire information to persuade the receiver, the sender publicly chooses
an experiment that consists of finite results, each of which is a posterior belief or the probability of the
high state, and a Bayes-plausible probability distribution over them. The sender commits to conducting
the chosen experiment. After privately observing a realized result, the sender reports a message to the
receiver with a reporting cost. The exogenously assumed cost structure depends on both the realized
result and the message reported, and exhibits strictly decreasing differences. Given any result, sending
the sender’s cost-minimizing message is considered truth-telling, while sending other costly messages is
considered lying, manipulation, or signaling. The receiver takes an action in a continuous action space
after observing the experiment and message chosen by the sender.

We first obtain a unique prediction about the sender’s reporting strategy and expected payoff for
any given experiment. After choosing an experiment, the two players play a signaling game where the
realized result becomes the sender’s private type. We focus on the unique sequential equilibrium selected
by the D1 criterion (Cho and Kreps, 1987; Cho and Sobel, 1990) in each signaling subgame. Given any
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experiment, there is a cutoff type; any types below it (if any) separate themselves, and all higher types
(if any) pool at the highest message (Lemma 1).

Our first contribution is to provide a methodology to characterize the sender’s optimal experiment
when she cannot commit to truth-telling (Proposition 1). In our framework, for any choice of experiment,
the sender’s payoffs after observing different results are interdependent and determined by the induced
equilibrium characteristics. The typical approaches useful in the Bayesian persuasion literature do
not allow us to solve the optimal experiment. By contrast, after establishing the existence of the
optimal experiment (Appendix B), we establish the Expected Pooling Cost Minimization Principle: for
an optimal experiment, pooling types (if any) have to be chosen such that the expected reporting cost of
all pooling types reaches the lower bound of the convex hull of the cost function for the highest message.
Then, we find an optimal experiment induces at most two types to separate with positive probability, as
with more than two separating types, the sender can design a better experiment by deleting unfavorable
ones, which reduces the signaling cost for separation.

Applying our methodology, we provide sufficient conditions for an optimal experiment to lead to
the incomplete separation of the experiment results (Proposition 2). We show the sender may acquire
information that cannot be transmitted in the reporting stage if the cost function is concave in types.
Intuitively, for a type that separates at a certain cost, if this type can be substituted with one lower
type and one higher type that pool, the lower type induces a higher cost while the higher type can
induce a lower cost. Then, as long as the concavity lowers the weighted average of their pooling cost,
the substitution is beneficial. By contrast, if the cost function is convex in types, the sender will
not acquire any information that cannot be fully transmitted and thus induce full separation because
having multiple pooling types leads to higher expected reporting cost relative to having a corresponding
separating type.

Our second contribution is that we find the sender may ex ante strictly prefer strategic reporting over
commitment to truthful reporting, if we assume truthful reporting, which occurs by sending the cost-
minimizing message for any realized result, is costly. A strictly positive minimum reporting cost for any
result captures the situations in which telling the truth requires some preparations of sound arguments.
Under this assumption, we compare our strategic reporting case with the situation in which the sender
commits to truthful reporting. We find that to obtain the same action, strategic reporting may incur
a lower expected reporting cost via pooling, which is unfeasible in the corresponding commitment case
and makes strategic reporting better (Proposition 3). This complements the well-established conclusion
in the Bayesian persuasion literature: commitment to costless truth-telling is always optimal for the
sender.

Lastly, we apply our methodology to explicitly characterize the optimal experiment under different
restrictions. When separation is always costly and the cost structure is concave in types, it is better to
distance the experiment results. Based on this logic, we derive the respective conditions for the fully
informative and uninformative experiment to be optimal. We also obtain the condition under which
the sender can strictly benefit from information design if she cannot commit to truthful reporting.
Finally, we apply our main conclusions to the case in which the sender has linear utility. For different
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cost function forms, we fully characterize the optimal experiment and conduct a comparative statics
analysis, finding that the sender chooses a weakly more informative experiment if the cost intensity is
higher.

The remainder of the paper is organized as follows. We discuss the related literature in Section 1.1.
Section 2 describes the model. We investigate the subgame after choosing any experiment in Section 3
and characterize the equilibrium of the whole game in Section 4. In Section 5, we consider the setting of
costly truth-telling and compare strategic reporting with commitment to truthful reporting. In Section
6, we explicitly characterize the optimal experiment under different conditions. Section 7 concludes. All
proofs are relegated to the Appendix.

1.1 Related Literature

This paper contributes to the literature that studies the information design problem faced by the sender
who is unable to commit to truthfully reporting the information obtained. The growing literature
builds on Bayesian persuasion1 by the seminal paper Kamenica and Gentzkow (2011) with the key
departure of relaxing the truth-telling assumption, and provides different ways to characterize strategic
reporting. This paper makes a novel contribution by describing the strategic reporting behavior using
signaling games and bridging Bayesian persuasion and signaling games. The classic signaling game
analysis provides the theoretical foundation, that enables us to characterize the optimal experiment
for the sender and make comparative statics analysis on the cost intensity. This paper is the first to
identify the situation where it is optimal for the sender to design an experiment to obtain information
that cannot be fully transmitted.

We review several closely related papers. Nguyen and Tan (2021) examine a model in which the
sender sends a message, which is potentially costly, after committing to an experiment and privately
observing its result. They focus on a cost structure that depends on the label of the realized results
and the message. In contrast, our focus is on setting the cost to be dependent on the posterior beliefs
of realized results and the message sent, such that more beneficial results lead to a lower marginal cost.
They explore full separation of results after committing to an experiment, and our emphasis lies in
characterizing the optimal experiment for the sender based on signaling subgames. Guo and Shmaya
(2021) introduce a miscalibration cost and assume no commitment power in both the information design
stage and the reporting stage. This means that the information structure chosen by the sender is also
unobservable for the receiver. Min (2021) and Lipnowski et al. (2022) consider a situation where the
sender commits to a signaling rule, after which she reports the true signal realization with a given
probability and privately chooses a signal to send to the receiver with a complementary probability.
Ederer and Min (2024) also consider partial commitment to a signaling rule when lying can be detected
with certain probability. Lyu and Suen (2022) study the information design problem that precedes the
cheap talk communication of the acquired information.2 Lastly, Pei (2023), Best and Quigley (2024) and

1See Kamenica (2019) and Bergemann and Morris (2019) that provide comprehensive surveys of the Bayesian persuasion
literature.

2Ivanov (2010) also studies information control before cheap talk but the sender’s information structure is chosen by
the receiver.
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Mathevet et al. (2024) relax the commitment assumption in dynamic settings and provide justifications
for the sender’s commitment power in Bayesian persuasion.

Further, Hedlund (2017) and Perez-Richet and Skreta (2022) explore the situation in which the
sender has private information before information design. Hedlund (2017) studies a Bayesian persuasion
model in which the sender has private payoff-relevant information and then her choice of experiment
signals her private information. Perez-Richet and Skreta (2022) introduce a designer to design an
experiment after receiving the sender’s state-related information. The designer aims to maximize the
receiver’s welfare while the informed sender can incur costs to falsify the true state.

Our notion of the reporting cost is conceptually related to money burning in Austen-Smith and
Banks (2000) and the lying cost in Kartik et al. (2007) and Kartik (2009). These studies examine
the costly communication between a perfectly informed sender and an uninformed receiver without the
additional layer of an information design problem.

As noted above, our model bridges information design and signaling. Compared with the standard
signaling game since Spence (1973), in our model, the information structure, considered as the set of
sender types, is endogenously chosen by the sender. The signaling equilibria in Cho and Kreps (1987)
and Cho and Sobel (1990) provide the theoretical foundation for the analysis of our model. In and
Wright (2018) also consider an extended signaling game, in which a sender chooses her private type,
rather than a publicly observable information structure, before a signaling game is played.

Our model is also related to the endogenized (covertly or overtly) information acquisition problem.
Che and Kartik (2009), Pei (2015), Argenziano et al. (2016), and Kreutzkamp (2022) consider models
in which the sender can obtain information with a cost before information transmission. Our model can
be considered a costless information acquisition problem that precedes strategic reporting.

2 Model

2.1 Setup

There are two players, a sender (she) and a receiver (he). The state of the world θ ∈ {L = 0, H = 1}.
The realization of the state is unknown to both players; while they have the same prior belief µ, the
probability that H is realized. The sender’s utility only depends on the receiver’s action while the
receiver’s utility also depends on the state. The sender’s utility denoted by U : A → R is continuous
and strictly increasing in the receiver’s action a ∈ A ≡ [

¯
a,+∞), where

¯
a is the lower bound of the action

space. When the state is θ = L,H, the receiver’s utility is denoted by V θ : A → R. We assume that
V θ is twice differentiable in a with ∂2V θ

∂a2
< 0 and ∂V L

∂a < ∂V H

∂a , to let the receiver’s ideal action, denoted
by aθ = arg maxa∈A V

θ, be higher for the high state, i.e., aL ≤ aH . To guarantee the existence of the
two ideal actions, we further assume there exists aH >

¯
a such that ∂V H

∂a

∣∣
a=aH

= 0. In this model, the
sender always prefers a higher action and the receiver would like to choose an action contingent on the
state.
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Information Design The sender publicly chooses an information structure that includes a finite set
S of signal realizations and a signaling structure π : {L,H} → ∆(S), a family of distributions over S
conditional on each state. Then, a signal in S is realized according to π. The sender privately observes
the realized signal and forms her posterior belief about the state.

According to Proposition 1 of Kamenica and Gentzkow (2011), choosing an information structure is
equivalent to choosing a Bayes-plausible distribution of posterior beliefs (1− t, t) ∈ ∆({L,H}), where t
denotes the probability of H. The sender’s choice of information structure can then be transformed to
choosing an experiment τ = (T ≡ {t1, . . . , tn}; τ(·) ≡ (τ1, . . . , τn)),3 where

• 0 ≤ t1 ≤ · · · ≤ tn ≤ 1;

• τ(·) ∈ int(∆(T )) is a probability distribution over T that satisfies

n∑
i=1

tiτi = µ.

T contains finite elements and ||T || = n is chosen by the sender. We call t ∈ T a result and T a
result set. By definition, τ(·) is a Bayes-plausible probability distribution over the result set.4 After an
experiment τ is chosen, it becomes common knowledge between the players. Then, one result t ∈ T is
drawn according to τ(·), which is privately observed by the sender.

Strategic (Mis-)Reporting The sender then reports a messagem ∈M to the receiver at a reporting
cost c(t,m). The message space M = [0,m] with the highest message m > 0 and cost function
c : [0, 1] ×M → [0,+∞) are exogenously given and independent of the sender’s choice of experiment.
The sender’s reporting cost depends on both the realized result and the message sent. c is continuous
in both variables and strictly quasi-convex in m for any given t, implying that, for any t ∈ [0, 1], there
exists a unique cost-minimizing message mc(t) ≡ arg minm∈M c(t,m). The cost function also satisfies a
single-crossing condition: ∂2c

∂t∂m < 0, that is, the sender’s marginal cost of sending a message is higher
after observing a lower result. We assume that the sender sending mc(t) after observing t, which is
considered truth-telling, is always costless, i.e., the minimum cost c(t,mc(t)) = 0 for any result t. To
eliminate trivial cases, assume mc < m.

The receiver observes the experiment τ and the message m chosen by the sender, after which he
takes an action a ∈ A, determining both players’ payoffs. All the information in the game except the
realized result is common knowledge between the players. The timing of the game is summarized as
follows.

• Stage 1: Information Design

– The sender designs and faithfully implements an experiment τ = (T ; τ(·)).
3In our model, the sender’s reporting cost depends on the message and posterior. Therefore, it is without loss of

generality to define experiments as distributions of posteriors.
4For an experiment with two results t1 < t2, τ(·) is determined by these two results and the experiment should be

(t1, t2; t2−µ
t2−t1

, µ−t1
t2−t1

).
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– The experiment chosen by the sender becomes common knowledge.

• Stage 2: Strategic Reporting

– Nature draws one experiment result t ∈ T according to τ(·).

– The sender privately observes the result t and sends a message m ∈ M to the receiver that
incurs a cost c(t,m).

– The receiver observes τ and m and takes action a ∈ A.

2.2 Discussion of the Assumptions

The reporting cost mainly captures the cost of transmitting or manipulating information and the mes-
sage can be natural language, advertisement, persuasive argument, and so on. The cost structure is
exogenously assumed. The interpretation is that the cost of sending messages depends on the market
environment. In a market filled with advertising and promotion, the sender needs to transmit informa-
tion through advertising media. The cost is associated with the signaling cost incurred by promotion,
and the higher the cost, the more credible the report. In a market in which there are ways to manipulate
information, the cost incurred is associated with the fabrication or lying cost.

The single-crossing condition imposed on the cost function (i.e., ∂2c
∂t∂m < 0) is crucial but natu-

ral. This condition is standard in signaling games and requires the cost exhibits strictly decreasing
differences: for any two messages, if the sender strictly prefers the higher message after obtaining a
result t, she must strictly prefer the higher message after obtaining any result higher than t. Roughly
speaking, it is less costly for the sender to send a high message when she obtains a higher result. Since
the sender’s preference for the receiver’s action is state-independent, i.e., U strictly increases in a, the
condition ∂2c

∂t∂m < 0 guarantees the indifference curves U − c of different sender types through a fixed
action-message pair intersect only once. This single-crossing condition is satisfied by a wide range of
functional forms which have rich economic implications. For instance, the cost of advertising can be
represented by c = (1 − bt)m, where b ∈ (0, 1) is constant, meaning that, the higher the result, the
lower the cost of advertising. The function captures one kind of signaling cost and the sender can utilize
costly messages to signal her obtained result. Another example is that the sender’s cost from lying or
manipulation of experiment results can be represented by c = (m−t)2, that captures the cost depending
on the “size” of a lie, similar to the lying cost in Kartik (2009).5

2.3 Solution Concept

The solution concept is the D1 subgame perfect equilibrium. For any experiment that may be chosen in
Stage 1, a corresponding subgame is played in Stage 2. Since no information asymmetry exists in Stage
1, we mainly employ the notion of subgame perfection to obtain the solution of the entire game. In any
subgame, we focus on the sequential equilibrium selected by the D1 criterion (Cho and Kreps, 1987),

5The lying cost function form, e.g., c = (m− t)2, satisfies the single-crossing condition, and the sender’s payoff function
U(a) − c has the single-crossing property. This is different from the setting of Kartik (2009), in which the sender’s
preference for the action is state-dependent and the sender’s payoff function does not has the single-crossing property.
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called the D1 equilibrium, the existence and uniqueness of which are proved by Cho and Sobel (1990).
The next section offers a detailed illustration.

Given any experiment τ = (T ; τ(·)), let σ(·|t) : T → ∆(M) denote the sender’s reporting strategy,
aR(·) : M → A denote the receiver’s action strategy, and ρ(·|m) : M → ∆(T ) denote the receiver’s
posterior belief.6 We restrict attention to equilibria in which σ has finite support. Then, σ(m|t) is
the probability that the sender sends m after observing t. The D1 subgame perfect equilibrium is
represented by (τ ∗, (σ∗, aR∗, ρ)τ ), where

• (σ∗, aR∗, ρ)τ is the D1 equilibrium of the subgame given any τ ; and

• τ ∗ is the experiment chosen by the sender in Stage 1 by taking (σ∗, aR∗, ρ)τ as given.

3 Preliminaries: Signaling Subgames

In this section, we reformulate each subgame as a signaling game and characterize its D1 equilibrium.

Given any experiment τ , the subsequent subgame in Stage 2 is a signaling game. The result ti ∈ T
drawn according to τ(·) is considered the sender’s private type7, and the receiver holds the prior belief
(τ1, . . . , τn) over all possible types, where τi is the probability assigned to ti. Denote the receiver’s
expected utility conditional on any result as

V (ti, a) ≡ tiV H + (1− ti)V L.

Then, V : [0, 1]×A→ R satisfies Vaa < 0 and Vat > 0, so that the receiver has a unique optimal action
for any type, denoted by αR(ti) ≡ arg maxa∈A V (ti, a), which weakly increases in ti ∈ [0, 1].8 After
observing ti, the sender reports a message with a cost, and the receiver takes an action. A sequential
equilibrium of the subgame induced by experiment τ is a triple (σ, aR, ρ)τ that satisfies

1. for all ti ∈ T , if σ(m′|ti) > 0, then m′ ∈ arg maxm∈M U(aR(m))− c(ti,m); and

2. for all m ∈M , aR(m) = arg maxa∈A
∑n

i=1 V (ti, a)ρ(ti|m), where

3. ρ(ti|m) = σ(m|ti)τi∑n
j=1 σ(m|tj)τj if

∑n
j=1 σ(m|tj)τj > 0.

In any subgame, however, there could be multiple sequential equilibria, which brings about difficulties
in comparing different experiments as the sender’s expected payoff from choosing any experiment cannot
be uniquely determined. To make equilibrium selection, we apply the D1 criterion, which restricts the
off-equilibrium-path beliefs and has been widely applied in the signaling game literature.9 Especially
for this subgame, it neither constrains too much to make the equilibrium non-existent nor constrains

6The triple (σ, aR, ρ) varies according to different τ . To be rigorous, we can represent the sender’s strategy after
choosing τ as στ : T → ∆(M), where T is the result set of τ . We remove the subscript for the sake of brevity. Moreover,
owing to the strict concavity of V in a, we consider pure strategies of the receiver action without loss of generality.

7We use the two terms “result” and “type” interchangeably.
8See Lemma A.1 in the Appendix for the proof.
9For example, Hedlund (2017) and Heese and Liu (2023) also apply the D1 criterion to consider signaling in information

design problems.
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too little to bring about multiple equilibria, as the D1 equilibrium always exists and is unique. Roughly
speaking, it requires the receiver to believe that any off-path message is sent by the type that is most
likely to benefit from such deviation. The formal definition is as follows.

In the subgame after choosing τ , given a sequential equilibrium (σ, aR, ρ), for message m, m̃ s.t.
σ(m|ti) > 0 and

∑n
j=1 σ(m̃|tj)τj = 0, define the set D(m̃, ti) =

{
a ∈ [aL, aH ]

∣∣ U(aR(m)) − c(ti,m) <

U(a) − c(ti, m̃)
}
and D0(m̃, ti) =

{
a ∈ [aL, aH ]

∣∣ U(aR(m)) − c(ti,m) = U(a) − c(ti, m̃)
}
. Given the

receiver responds optimally, D(m̃, ti) ∪D0(m̃, ti) is the set of the actions in response to m̃ that makes
type ti weakly prefer to deviate from her equilibrium message and send m̃.

Definition 1. In the signaling subgame induced by experiment τ , a sequential equilibrium (σ, aR, ρ)τ

satisfies the D1 criterion if for any off-equilibrium-path message m̃, ρ(tj |m̃) = 0 whenever there exists
tk ∈ T such that D(m̃, tj) ∪D0(m̃, tj) ⊂ D(m̃, tk) and D(m̃, tk) 6= ∅.

Next, based on Cho and Sobel (1990, Proposition 4.1-4.4),10 we provide the full characterization of
the D1 equilibrium induced by τ . To simplify the notation, denote

Û(t) ≡ U(αR(t))

as the sender’s utility given that the receiver believes the realized result is t. We then calculate the
separating message mi(τ ), which is the least costly message utilized by type ti for full separation of
{t1, . . . , ti}, recursively. First, m1(τ ) := mc(t1). Next, for i ≥ 2,

mi(τ ) := arg max
m∈M

Û(ti)− c(ti,m) = arg min
m∈M

c(ti,m)

s.t. Û(ti−1)− c(ti−1,mi−1(τ )) ≥ Û(ti)− c(ti−1,m) (IC)

and m ≥ mi−1(τ ).

The inequality is the incentive compatibility (IC) condition for separation, which guarantees types ti−1

and ti have no incentive to mimic each other. Define the expected value of the types, conditional on
the type being higher than ti or exactly at ti with probability x ∈ (0, 1], as

φi(τ , x) = Eτ
(
t ∈ T

∣∣∣ t = ti|prob x , or t > ti
)

=
tiτix+

∑n
k=i+1 tkτk

τix+
∑n

k=i+1 τk
.

Lemma 1 (Cho and Sobel (1990)). In the signaling subgame induced by experiment τ = (t1, . . . , tn; τ1, . . . , τn),
there exists a unique D1 equilibrium outcome derived by the following induction procedure starting from
type t1. The recursive induction of the strategy of type ti is as follows.

1. If Û(ti)− c(ti,mi(τ )) ≤ Û(φi(τ , 1))− c(ti,m), then tj, j ≥ i, sends m.

2. If Û(φi(τ , 1)) − c(ti,m) < Û(ti) − c(ti,mi(τ )) < Û(φi+1(τ , 1)) − c(ti,m), ti sends mi(τ ) with
10The setting of our model satisfies their assumptions (A0-A4 in Section 4 in Cho and Sobel (1990)), and their conclusions

about the characterization and uniqueness of the D1 equilibrium apply.
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probability 1 − q and m with probability q, where q satisfies Û(ti) − c(ti,mi(τ )) = Û(φi(τ , q)) −
c(ti,m). Then, tj, j ≥ i+ 1, sends m.

3. If Û(ti)− c(ti,mi(τ )) ≥ Û(φi+1(τ , 1))− c(ti,m), ti separates by sending mi(τ ). We then continue
the induction procedure to analyze the strategy for type ti+1.

Lemma 1 guarantees each experiment choice leads to a unique D1 equilibrium in the subsequent
subgame. Then, in Stage 1, the sender chooses an experiment that can induce the highest expected
payoff for her, denoted by τ ∗ and called an optimal experiment. The recursive induction of the sender’s
equilibrium strategy provides a foundation for the subsequent analysis of different experiment choices.
The D1 equilibrium must be one of two kinds:

1. A separating equilibrium in which every type of the sender separates herself by sending her sepa-
rating message so that the acquired information is fully transmitted.11

2. A pooling equilibrium in which there exists a threshold type tp such that all lower types (if any)
separate and all higher types pool at m. To determine tp, we need to sequentially check types t1
to tn−1, to find out the lowest type that has an incentive to pool with all higher types. This equi-
librium can be partial-pooling or total-pooling, in which partial or no information is transmitted.

Full separation is not a mere consequence of the expansion of the message space. It depends on both m
and the characteristic of the cost function. All types need to utilize messages costly enough to separate
themselves from all lower types. If the cost function is bounded above, even with m→ +∞, there may
exist an experiment that induces a pooling equilibrium.

4 Optimal Experiment

Note that in Kamenica and Gentzkow (2011), as no strategic incentive is allowed in the reporting stage,
the equilibrium payoff of each type can be considered a function merely depending on the posterior or the
type itself, in which case the concavification approach is useful. In our setting, however, the equilibrium
payoff of each type is also determined by the choice of experiment. Since given any experiment, all
types’ equilibrium payoffs are interdependent, the standard approach cannot be applied directly and
we need to compare the different experiments to narrow the range of the optimal experiment stepwise.
We investigate how to design an optimal experiment (Section 4.1) and when the sender will design an
experiment to obtain information that cannot be fully transmitted through reporting (Section 4.2).

While a unique D1 equilibrium exists in each signaling subgame, the existence of a D1 subgame
perfect equilibrium or an optimal experiment is not automatically guaranteed, as there are infinite
subgames or experiment choices.12 We establish the existence of the optimal experiment by proving the

11The D1 equilibrium induced by the experiment that contains only one result, (µ; 1), is still called a separating
equilibrium.

12In our game, the existence of an optimal experiment is not trivial because of two challenges. First, the set of all
possible experiments is not closed. Second, the sender’s expected payoff is discontinuous in the choice of experiment. This
discontinuity is caused by the discontinuous changes in the equilibrium strategy as the number of results decreases. In
Appendix B, we show an optimal experiment needs finite results and transform the set of all experiments with at most n
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sender’s expected payoff is upper semi-continuous across all experiment choices. The formal proof of
the existence is provided in Appendix B.

4.1 Characterization

Let us call an experiment that induces a signaling subgame with a unique separating (pooling) D1
equilibrium a separating (pooling) experiment. A pooling experiment can be either a total-pooling or
partial-pooling experiment.

We introduce several notations. In the signaling subgame induced by an experiment τ , denote
the equilibrium payoff function of each type ti ∈ T as fτ : T → R. Note that for any given ti, the
function fτ (ti) varies depending on τ . Then, the sender’s expected payoff from experiment τ , denoted
by E(τ ) =

∑n
i=1 τifτ (ti), is a convex combination of them. In Stage 1, the sender chooses an optimal

experiment τ ∗ that maximizes her expected payoff.

If the sender intends to produce any pooling in the strategic reporting stage, we find her expected
cost from pooling would always approach a certain minimum, stated as the Expected Pooling Cost
Minimization Principle. To describe this property, for any pooling experiment τ , let tp denote the

lowest type with σ∗(m|t) > 0. Denote the expected value of all pooling types as φ∗p(τ ) =
∑n
i=p tiτiσ

∗(m|ti)∑n
i=p τiσ

∗(m|ti)
and the expected reporting cost from pooling (at m) as

ECPτ ≡
∑n

i=p c(ti,m)τiσ
∗(m|ti)∑n

i=p τiσ
∗(m|ti)

.

Denote the reporting cost at m for result t ∈ B, where B ⊆ [0, 1] is a closed convex set, as function
c(t,m)|B : B → [0,+∞). Define the convex lower closure of the function c(t,m)|B as

C(t̂, m)|B ≡ inf
{
z|(t̂, z) ∈ co(c(t,m)|B)

}
,

where co(c(t,m)|B) denotes the convex hull of the graph of c(t,m)|B. C(t̂, m)|B is the largest convex
function that is weakly smaller than c(·,m) everywhere on B. Figure 1 illustrates the convex lower
closure of c(t,m)|[0,1] and c(t,m)|[µ,1], respectively.

Clearly, ECPτ ≥ C(φ∗p(τ ),m)
∣∣
[tp,1]

≥ C(φ∗p(τ ),m)
∣∣
[
¯
t,1]

,
¯
t ≤ tp. The next lemma shows when a

pooling experiment is optimal, the expected reporting cost from pooling must be minimized to a certain
convex lower closure.

Lemma 2 (Expected Pooling Cost Minimization Principle). If an optimal experiment τ ∗ is a pooling
experiment, then

ECPτ∗ = C(φ∗p(τ ∗),m)
∣∣
[tp,1]

.

results to a closed set, for any finite n ∈ N. Then, we prove the expected payoff satisfies the upper semi-continuity.
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Figure 1: Convex Lower Closure

Moreover, when σ∗(m|tp) = 1,

ECPτ∗ =

 C(φ∗p(τ ∗),m)
∣∣
[0,1]

if p = 1,

C(φ∗p(τ ∗),m)
∣∣
[tp−1,1]

otherwise.

To understand why this principle must hold, we consider a case of total-pooling.13 Suppose τ =

(t1, t2; τ1, τ2) induces t1, t2 to pool at m and is optimal. Then, tp = t1, φ∗p(τ ) = µ, and

E(τ ) = τ1[Û(µ)− c(t1,m)] + τ2[Û(µ)− c(t2,m)] = Û(µ)− ECPτ .

Suppose ECPτ > C(µ,m)
∣∣
[0,1]

and there are two points (t′1, c(t
′
1,m)) and (t′2, c(t

′
2,m)), t′1 < t′2, such

that

τ ′1c(t
′
1,m) + τ ′2c(t

′
2,m) = C(µ,m)

∣∣
[0,1]

,

τ ′1t
′
1 + τ ′2t

′
2 = µ.

Then, we can show experiment τ ′ = (t′1, t
′
2; τ ′1, τ

′
2) is strictly better than τ , which leads to a contradiction,

for the following reason.

If τ ′ induces a total-pooling equilibrium in which t′1 and t′2 pool at m, we have E(τ ′) = Û(µ) −
C(µ,m)

∣∣
[0,1]

> E(τ ). Otherwise, τ ′ induces a separating equilibrium, or a partial-pooling equilibrium
in which t′1 pools at m with probability q ∈ (0, 1). By the IC condition for any separation, we have

fτ ′(t
′
1) = Û(t′1) > Û(µ)− c(t′1,m).

Since
fτ ′(t

′
2) ≥ Û(t′2)− c(t′2,m) or fτ ′(t

′
2) = Û(φ1(τ ′, q))− c(t′2,m),

13Although a total-pooling experiment is never optimal because it is always worse than the experiment (µ; 1), for the
sake of clarity, we use it as an example to illustrate the logic of the proof.
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then
fτ ′(t

′
2) > Û(µ)− c(t′2,m).

Therefore, E(τ ′) > E(τ ).

The newly constructed experiment τ ′ is better regardless of which kind of equilibrium it induces. If
it still induces total-pooling, the expected reporting cost is reduced. If it induces any separation, by the
IC condition, the lower type’s payoff from separation must be higher than that from total-pooling and
the remaining pooling types can obtain a higher receiver action as there is less pooling. By the same
logic, for any partial-pooling experiment that does not satisfy the Expected Pooling Cost Minimization
Principle, we can always substitute its pooling types similarly to above, without changing its separating
part, to construct a strictly better experiment.

Proposition 1. The optimal experiment τ ∗ needs at most three types. Specifically,

1. τ ∗ needs at most two types to induce a separating equilibrium; or

2. τ ∗ needs at most three types to induce a pooling equilibrium, in which at most two types pool
with positive probability and at most one type separates with positive probability, and satisfies the
Expected Pooling Cost Minimization Principle.

To achieve this conclusion, we compare payoffs of each type across experiments. Given any τ , define
the concave closure of fτ (ti), ti ∈ T as

Fτ (t̂) ≡ sup
{
z|(t̂, z) ∈ co(fτ )

}
,

where co(fτ ) denotes the convex hull of the graph of fτ . fτ is defined on T , while Fτ is defined over
[t1, tn], the smallest convex set that contains T . Then, E(τ ) ≤ Fτ (µ).

First, Proposition 1 implies it is without loss of generality to limit our attention to the set of
experiments with only two types or one type to characterize the optimal experiment if it is a separating
experiment. The reason is as follows. Consider any separating experiment τ with ‖T‖ > 2. There must
exist two points14 (tj , fτ (tj)) and (tk, fτ (tk)), tj , tk ∈ T , tj < µ < tk, such that

rfτ (tj) + (1− r)fτ (tk) = Fτ (µ),

rtj + (1− r)tk = µ,

where r = tk−µ
tk−tj . We can utilize the two types to construct a new experiment τ ′ = (tj , tk; r, 1−r), which

would induce a separating equilibrium with fτ ′(tj) ≥ fτ (tj) and fτ ′(tk) ≥ fτ (tk) because fewer types
can spend weakly lower reporting cost to signal their types due to fewer IC conditions for separation.
Thus, its expected payoff E(τ ′) ≥ Fτ (µ) ≥ E(τ ). For any separating experiment with more than
two types, we can delete all “unbeneficial” types to let the remaining type(s) construct a weakly better
separating experiment that consists of at most two types, as illustrated in Figure 2.

14Or one point (µ, fτ (µ)) s.t. fτ (µ) = Fτ (µ). Then, experiment (µ; 1) induces a weakly higher expected payoff than τ .
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Figure 2: A Separating Experiment with Three Types

Next, we investigate the case in which τ ∗ is a pooling experiment. Proposition 1 indicates that
neither too much separation nor too much pooling is beneficial. On the one hand, if the number of
separating types exceeds the number of states, positive probabilities are allocated to unbeneficial types
and some signaling costs are wasted. Moreover, having fewer separating types weakens the IC constraints
and enables some pooling types to choose separation whenever it is more beneficial than pooling, which
also lets the remaining pooling types gain a weakly higher action. On the other hand, based on the
Expected Pooling Cost Minimization Principle, at most two types are needed to approach any convex
lower closure. To summarize, there are three cases: the optimal experiment needs two types that pool;
it needs two types and the lower type mixes between separation and pooling with the higher type; it
needs three types, with the lowest type separating and the other two pooling.

4.2 Sufficient Conditions for Full/Partial Information Transmission

In this subsection, we focus on providing sufficient conditions for τ ∗ to be a separating experiment and
to be a partial-pooling experiment. We denote tL = 0 and tH = 1.

Corollary 1 (Sufficient Condition for Separation). The sender must choose a separating experiment if
either of the following conditions holds:

1. c(t,m) is strictly convex in t ∈ [µ, 1], and C(t,m)
∣∣
[µ,1]

= C(t,m)
∣∣
[0,1]

, ∀ t ∈ [µ, 1];

2. c(t,m) ≥ Û(tH)− Û(tL), ∀ t.

The first condition restricts the shape of the cost structure. To obtain the condition, let us start
with a stronger version of it: c(t,m) is strictly convex in t everywhere. Under this condition, any
pooling experiment is dominated by a corresponding separating experiment, derived by substituting all
the pooling types with one type that equals their expectation. To show this, consider a partial-pooling
experiment τ = (t1, . . . , tn; τ1, . . . , τn) such that t1, . . . , tp−1 separate and tp, . . . , tn pool. Recall that
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φ∗p(τ ) is the expected value of all pooling types. Since

Û(tp−1)− c(tp−1,mp−1(τ )) ≥ Û(φ∗p(τ ))− c(tp−1,m),

the new experiment τ̂ = (t1, . . . , tp−1, t̂p; τ1, . . . , τp−1, τ̂p), where t̂p = φ∗p(τ ), τ̂p =
∑n

j=p τj , must induce
a separating equilibrium. Since mi(τ ) = mi(τ̂ ), i ≤ p − 1, we have fτ (ti) = fτ̂ (ti). By the convexity
of the cost function, τ̂pfτ̂ (t̂p) >

∑n
j=p τjfτ (tj), i.e., the new experiment is strictly better. Furthermore,

because the expectation of pooling types is always weakly higher than µ, the convexity of c(t,m) can
be relaxed, as the first condition in Corollary 1 states. This sufficient condition can also be considered a
direct consequence of Lemma 2: when the cost function is strictly convex, any pooling cannot minimize
the expected reporting cost, so it is never optimal.

The second condition restricts the scale of the reporting cost to ensure full separation. In any
experiment (t1, . . . , tn; τ1, . . . , τn), for any type ti, if it sends m, its payoff is weakly lower than Û(tn)−
c(ti,m) regardless of whether it separates or pools; if it sends its costless message, which may be an
off-path message, its payoff is weakly higher than Û(t1). Hence, the condition Û(tL) > Û(tH)− c(t,m)

guarantees any type has no incentive to send m and any experiment induces a separating equilibrium.
Under either condition in Corollary 1, the sender never acquires information that cannot be transmitted.

We now move our attention to characterizing the sufficient conditions for the sender choosing a
partial-pooling experiment. We define the best separating experiment τ s as the separating experiment
that achieves the highest expected payoff for the sender among all separating experiments. τ s always
exists (Lemma B.1, Appendix B). The following proposition guarantees there exists a partial-pooling
experiment that is better than τ s, which means an optimal experiment must be partial-pooling.

Proposition 2 (Sufficient Condition for Pooling). The sender must choose a partial-pooling experiment
if the best separating experiment τ s is informative and τ s = (t1, t2; τ1, τ2) satisfies c(t2,m2(τ s)) >

C(t2,m)
∣∣
[t1,1]

.

Let us sketch the proof. If the condition in Proposition 2 is satisfied, we can substitute type t2 of
τ s with two types, t′ and t′′, to construct a new experiment τ ′ = (t1, t

′, t′′; τ1, rτ2, (1 − r)τ2)15, where
t′ < t2 < t′′ satisfy

rt′ + (1− r)t′′ = t2,

rc(t′,m) + (1− r)c(t′′,m) = C(t2,m)
∣∣
[t1,1]

.

We then show experiment τ ′ induces a partial-pooling equilibrium with E(τ ′) > E(τ s), that means
the optimal experiment must be partial-pooling and the sender acquires information that cannot be
transmitted.

Let us consider the equilibrium induced by τ ′. t1 will still separate and obtain the same payoff as in
experiment τ s. (1) If τ ′ induces t′ and t′′ to pool, the sender’s expected utility from the two types equals

15We elaborate on the situation in which t′ > t1. If t′ = t1, our analysis also applies.
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Û(t2). Compared with c(t2,m2(τ s)), the reporting cost of type t′, c(t′,m), is higher, while that of type
t′′, c(t′′,m), may be lower. As long as the weighted average of the cost from the two types, C(t2,m)

∣∣
[t1,1]

,
is lower than c(t2,m2(τ s)), we have E(τ ′) > E(τ s). As depicted in Figure 3, when the cost is concave
in types, c(t,m) decreases significantly with t such that c(t′′,m) is much lower than c(t2,m2(τ s)). Then,
after inducing pooling, the sender can save the reporting cost by introducing the higher type t′′ though
she incurs a higher cost by introducing the lower type t′. (2) If τ ′ induces t′ to separate, t′ obtains
a higher payoff from separation than from pooling. Then, τ ′ induces a separating equilibrium with
E(τ ′) > E(τ s), which contradicts the assumption that τ s is the best separating experiment.

t′ t′′t2
t

c

0

c(t,m)

c(t,m2(τ s))

Figure 3: Beneficial Pooling

In the sufficient conditions provided by Corollary 1 and Proposition 2, the property of the cost c
in t ∈ [0, 1] plays an important role, which is ignored in standard signaling games. The reason is that
the sender’s private information is often exogenously assumed in signaling games.16 By contrast, in
this model, though the message space and cost function are exogenously given, the sender’s experiment
choice or the distribution of sender types is endogenized.

Note that the convexity in types is sufficient for endogenized full information transmission, while the
concavity in types is necessary but not sufficient for partial information transmission. The condition that
c(t,m) is concave in t only ensures c(t2,m) ≥ C(t2,m)

∣∣
[t1,1]

, which does not suffice whenm2(τ s) < m. In
Corollary 2 (in Section 6.1), we identify a condition under which there exists a partial-pooling experiment
better than τ s when the cost is concave in types.

5 Strategic Reporting vs. Commitment to Truth-telling

So far, the model we analyzed has maintained the assumption that the minimized reporting cost for any
given result is zero. In this section, we relax this assumption. We allow the possibility that the lowest
reporting cost is strictly positive for some result and only assume c(t,mc(t)) ≥ 0, for t ∈ [0, 1].

16One exception is In and Wright (2018) that endogenizes the sender’s private type in the signaling game.
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To elaborate on its economic implications, we decompose the reporting cost function as follows:

c(t,m) = c(t,mc(t))︸ ︷︷ ︸
communication cost

+
(
c(t,m)− c(t,mc(t))

)︸ ︷︷ ︸
manipulation cost

.

The first component c(t,mc(t)) depends on the result and a positive value reflects the situation where
a non-negligible communication cost is incurred (e.g., Oniki, 1974; Hutter, 1986) regardless of whether
communication involves only truth-telling or not.17 The communication cost can have rich function
forms. It can be increasing in t if a more positive result needs to be delivered with more careful
argument and detailed evidence, which reflects underlying skepticism the receiver holds. It can be
concave in t, e.g., communication cost t(1− t) reflects that a more extreme result can be delivered at a
lower cost. The second component is considered manipulation cost. An example of the cost function is
c(t,m) = c0(t) + (m− t)2, where communication cost c0(t) ≥ 0 is a function of t and (m− t)2 depends
on the degree of manipulation.

Recall that sending the cost-minimizing message mc(t) after observing t is considered truth-telling.
We further assume mc(t) > 0 for any t > 0. Under this assumption, mc(t) strictly increases with t

(see Lemma A.2), in which case there is one-to-one mapping between mc(t) and t. Thus, if the sender
commits to truth-telling, her type will always be fully revealed to the receiver. Based on the assumption
that c(t,mc(t)) ≥ 0, truth-telling can be costly capturing the situation where telling the truth requires
some preparations of sound arguments. When truth-telling is always costless, for the sender ex ante,
strategic reporting is weakly worse than commitment to truth-telling in the reporting stage. Based on
this, we wonder given the same cost structure, when truth-telling (that always incurs the minimum
cost) can be costly, whether it is possible for the sender to ex ante strictly prefer strategic reporting
over the corresponding commitment to truth-telling.

We begin the following analysis. Define g(t) := Û(t) − c(t,mc(t)), for any t ∈ [0, 1]. Let G(t)

denote the concave closure of g(t) on [0, 1]. With commitment to truth-telling, the type t sender obtains
payoff g(t) and the optimal experiment induces the expected payoff G(µ). In strategic reporting, after
choosing any separating experiment, any type t obtains a payoff weakly lower than g(t), and therefore,
the sender’s expected payoff from any separating experiment cannot exceed G(µ).

What is the necessary condition for strategic reporting to be better than commitment to truth-
telling? We mainly consider that from the cost function aspect. First, in strategic reporting, based
on Corollary 1, if c(t,m) is convex in types, a separating experiment is optimal, so the sender can
never achieve an expected payoff higher than G(µ). Second, if truth-telling is costless for all types,
commitment is always weakly better than strategic reporting. We summarize as follows.

Observation: Given the same cost structure, the sender ex ante strictly prefers strategic reporting over
commitment to truth-telling, which incurs the minimum cost for any realized result, only if neither of the

17Communication costs can be regarded as a kind of transaction or institutional cost á la Coase (1960) and Demsetz
(1964). For example, when an experiment is designed by a pharmaceutical company to persuade investors and stockholders,
writing a report summarizing the scientific findings from the experiment to ensure that the audience can understand is
costly regardless of whether the report contains truthful information only.
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following conditions is satisfied: (1) c(t,m) is convex in t ∈ [0, 1]; (2) c(t,mc(t)) = 0 for any t ∈ [0, 1].

In strategic reporting, any separating experiment cannot induce an expected payoff higher than G(µ).
However, the sender’s payoff from a pooling experiment cannot be directly compared with G(µ). We
find if a pooling experiment is optimal, it can induce an expected payoff higher than G(µ). Proposition
3 provides two sufficient conditions under which there exists a pooling experiment in our strategic
reporting that can achieve strictly higher expected payoff than G(µ).

Proposition 3. Given the same cost structure, for the sender ex ante, strategic reporting is strictly
better than commitment to truth-telling, which incurs the minimum cost for any realized result, if either
of the following conditions holds.

1. Û(µ)− C(µ,m)
∣∣
[0,1]

> G(µ).

2. There exists experiment τ̃ = (t̃1, t̃2; τ̃1, τ̃2), where τ̃1g(t̃1) + τ̃2g(t̃2) = G(µ), that satisfies Û(t̃1) −
c(t̃1,mc(t̃1)) ≥ Û(t̃2)− c(t̃1,m) and c(t̃2,mc(t̃2)) > C(t̃2,m)

∣∣
[t̃1,1]

.

Note that one of the main conclusions from the Bayesian persuasion literature (e.g., Lipnowski et al.,
2022; Nguyen and Tan, 2021; Guo and Shmaya, 2021) is that fully committing to truthful reporting is
optimal for the sender ex ante when truthful reporting is costless. Our finding based on costly truthful
reporting complements that conclusion. Next, we provide an example to show how strategic reporting
benefits the sender, compared with truth-telling.

Example 1. For a ≥ 0, U(a) =
√
a+ 1, V (t, a) = −(a − t)2. M = [0, 1], µ = 1

2 , and c(t,m) =
(t−m)2

40 + t(1− t). Then αR(t) = t and the cost function is strictly concave in t ∈ [0, 1] for any m ∈M .
We have g(t) = Û(t) − c(t,mc(t)) =

√
t+ 1 − t(1 − t), strictly convex in t. Then, if committed to

truth-telling, the sender chooses the fully informative experiment τ̄ = (tL = 0, tH = 1; 1
2 ,

1
2) and obtains

G(µ) =
1

2
g(tL) +

1

2
g(tH) =

1 +
√

2

2
≈ 1.207.

As in Figure 4, the distance between the blue dot and the red dot is G(µ).

In strategic reporting, let us consider the equilibrium induced by τ̄ . Since

Û(tL)− c(tL,mc(tL)) < Û(µ)− c(tL,m),

tL and tH pool at m. Then, the sender’s expected payoff is

E(τ̄ ) =
1

2
[Û(µ)− c(tL,m)] +

1

2
[Û(µ)− c(tH ,m)] ≈ 1.212 > G(µ).

Thus, the sender strictly prefers strategic reporting.

Figure 4 shows in strategic reporting, how experiment τ̄ achieves an expected payoff higher than
G(µ). The expected utility and expected reporting cost from τ̄ are depicted by the two black dots,
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Figure 4: Benefits of Strategic Reporting

respectively. Compared with G(µ), τ̄ induces a total-pooling equilibrium such that the sender obtains
higher expected utility and a higher expected reporting cost. As long as the increase of the expected
utility exceeds the increase of the expected reporting cost, E(τ̄ ) > G(µ). In strategic reporting, by
choosing τ̄ , the sender can obtain the highest expected utility at µ, while she pays zero communication
cost and a relatively low manipulation cost. In contrast, with commitment to truth-telling, if the sender
chooses the uninformative experiment to induce utility Û(µ), she needs to pay the communication cost
c(µ,mc(µ)); if she chooses τ̄ to get rid of communication cost, her expected utility (depicted by the
blue dot) will be lower than Û(µ). Thus, strategic reporting can be better than the corresponding
commitment to truth-telling for the sender ex ante due to the above-mentioned cost-saving benefit.

6 Informativeness of the Optimal Experiment

In this section, we maintain the assumption that the minimized reporting cost for any realized result is
zero and we apply Proposition 1 to explicitly characterize the optimal experiment, which is dependent
on both the utility and cost structure. We divide all experiments into two categories: the uninformative
experiment, denoted by τ0 = (µ; 1), and informative experiments, which are all experiments except τ0.
Specially, the fully informative experiment, denoted by τ̄ = (tL = 0, tH = 1; 1−µ, µ), enables the sender
to accurately know the state.

We study the following questions. When does the sender select the fully informative experiment?
When does she want to select an informative experiment, that is, when does she benefit from persuasion?
How does the sender’s experiment choice vary with the intensity of her cost?

6.1 Choosing the Fully Informative Experiment

Compared with the sender’s utility U , if the reporting cost is either too high or too low, it plays no role
in the construction of the optimal experiment. i) When strategic reporting is too costly for the sender so
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that truth-telling is always the best choice after observing any realized result, the optimal experiment is
determined by the shape of the utility, the same as the situation in which the sender commits to truthful
reporting. ii) When the cost is too low so that the sender cannot credibly transmit information from
any informative experiment, the uninformative experiment is always optimal. Besides the two extreme
cases, our interest is concentrated on how the characteristics of the cost affect the optimal experiment.

To ascertain the determinant of the sender’s expected payoff, let us take a separating experiment
τ = (t1, t2; τ1, τ2) as an example. Suppose m2(τ ) > mc(t2), that implies the binding IC condition

Û(t1) = Û(t2)− c(t1,m2(τ )).

Then, the sender’s expected payoff

E(τ ) =
t2 − µ
t2 − t1

Û(t1) +
µ− t1
t2 − t1

[Û(t2)− c(t2,m2(τ ))]

= Û(t1) +
Û(t2)− c(t2,m2(τ ))− Û(t1)

t2 − t1
(µ− t1)

depends on two factors:

1. Û(t1), the lower bound of E(τ ), the lowest payoff either type is able to obtain. Type t1 obtains
Û(t1) if it separates. Type t2 can take less cost to send the separating message than type t1, and
thus, by the IC condition for type t1 to separate, t2 achieves a payoff higher than Û(t1).

2. The effect of t2, which is reflected in the slope

Û(t2)− c(t2,m2(τ ))− Û(t1)

t2 − t1
=
c(t1,m2(τ ))− c(t2,m2(τ ))

t2 − t1
.18

The numerator is the higher payoff that t2 can obtain, compared to t1, and it equals the amount
of the cost t2 can save for sending the separating message, compared with t1.

Given any low type t1, E(τ ) increases with the slope. The slope represents the ability of the high
type to distinguish itself from the low type and depends on the property of the cost structure. When
the cost function is concave in types, the sender’s cost decreases faster with types for any given message.
Then, the slope increases with t2 if m2(τ ) remains constant. Since higher t2 lets type t1 benefit more
from mimicking t2, m2(τ ) increases with t2, which further raises the slope because ∂2c

∂t∂m < 0.

Therefore, for any given low type t1, the sender wants the high type t2 to be as high as possible if her
ability to distinguish herself increases vastly with t2. This conclusion also applies when τ is a pooling
experiment. Formally, if the sender chooses from the experiments with two types, we summarize the
following condition under which the sender wants the high type to distance from the low type (HD).

HD Condition:
18It can be considered the slope of the line connecting the two payoff points (t1, Û(t1)) and (t2, Û(t2) − c(t2,m2(τ ))).

The equality is derived from the IC condition for separation.
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1. Given any m, c(t,m) is strictly concave in t; and

2. Û is strictly convex, or
∀ t1 < µ < t2, Û(t1) ≤ Û(t2)− c(t1,mc(t2)).

Lemma 3. If the HD condition is satisfied, the sender’s expected payoff from any two-result experiment
τ = (t1, t2; τ1, τ2) increases with t2 for any given t1.

The second part of the HD condition either restricts the shape of the utility or limits the scope
and sensitivity of the cost. When the cost is relatively low such that any separation is costly, i.e.,
Û(t1) ≤ Û(t2)− c(t1,mc(t2)), the shape of the cost function is the determinant of the optimal choice of
t2. The binding IC condition and the concavity of c imply that the sender’s expected payoff increases
with t2, for any given t1. When the cost is high such that some separation is costless, both the utility
and cost are the determinants. If t2 separates with no cost, convex Û guarantees the sender prefers a
higher t2; otherwise, concavity of c can guarantee that.

The HD condition guarantees that for all experiments containing two types, (t1, t2 = tH ; τ1, τ2) is
optimal. After further imposing some restrictions on the sender’s utility and cost structure, we achieve
the full characterization of τ ∗ as follows.

Proposition 4. Assume the HD condition is satisfied. The sender must choose the fully informative
experiment if Û(t) + c(t,m) is decreasing in t, for t ≤ µ, m ≥ mc(µ).

The HD condition requires c to be strictly concave in t, which implies the optimal experiment needs
at most two types regardless of whether it leads to a separating equilibrium or pooling equilibrium. This
is a direct application of Proposition 1. From Lemma 3, the HD condition indicates the sender chooses
either the uninformative experiment τ0 or an experiment containing tH , denoted by (t1, tH ; τ1, τ2).

We then solve the optimal experiment under the condition in Proposition 4 that Û ′ ≤ −∂c
∂t , for t ≤ µ.

Similarly to the demonstration for Lemma 3, let us take a separating experiment τ = (t1, tH ; τ1, τ2) as
an example. Suppose tH sends m2(τ ) > mc(tH). The sender’s expected payoff

E(τ ) = Û(tH)− c(tH ,m2(τ ))− Û(tH)− c(tH ,m2(τ ))− Û(t1)

tH − t1
(tH − µ)

depends on 1) the payoff of type tH , Û(tH) − c(tH ,m2(τ )), considered the possible upper bound, and
2) the slope

Û(tH)− c(tH ,m2(τ ))− Û(t1)

tH − t1
=
c(t1,m2(τ ))− c(tH ,m2(τ ))

tH − t1
.

We then consider how the choice of the low type t1 affects E(τ ). Given any upper bound, a lower
slope means higher expected payoff from the experiment, so the sender wants t1 to induce the lowest
slope. If the separating message remains unchanged, the payoff of type tH is fixed. Since c is concave
in t, the slope is minimized at t1 = tL for any given message m2. Further, the condition Û ′ ≤ −∂c

∂t

guarantees that the payoff of type tH decreases with t1 by making the separating message increase with
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t1, i.e.,
∂m2(τ )

∂t1
= −

Û ′(t1) + ∂c(t1,m2(τ ))
∂t1

∂c(t1,m2(τ ))
∂m

> 0,

which is derived from the IC condition by the implicit function theorem. In conclusion, t1 = tL makes
type tH obtain the highest payoff, conditional on which, the slope is minimized, and thus generates the
highest expected payoff. Since the uninformative experiment can be considered as (t1 = µ, tH ; 1, 0),
then it is strictly worse than the fully informative experiment.

Intuitively, this condition Û ′ ≤ −∂c
∂t ensures that the benefit from lowering t1 is greater than the

loss. The loss is from the reduction of Û(t1), while the benefit is the raise of the payoff of type tH as
well as the higher probability allocated to tH . The analysis can also be applied to the case where τ is
a pooling experiment. In summary, the sender chooses the fully informative experiment regardless of
whether the acquired information can be fully transmitted or not.

Applying Lemma 3, under the HD condition, we also identify a situation in which it is optimal for
the sender to design a partial-pooling experiment.

Corollary 2. Assume the HD condition is satisfied. The optimal experiment is partial-pooling if τ s =

(t′1, t
′
2; τ ′1, τ

′
2) is informative and t′2 < tH .

According to Lemma 3, m2(τ s) = m, and then, the experiment (t′1, tH ; τ1, τ2) induces a partial-
pooling equilibrium with an expected payoff higher than τ s. Hence, the optimal experiment is partial-
pooling. This corollary can also be derived from Proposition 2.

6.2 Value of Persuasion: Choosing an Informative Experiment

Does the sender have an incentive to participate in the persuasion process when she cannot commit to
full transmission of the obtained information? As she can always abandon persuasion through choosing
the uninformative experiment without incurring any cost, we need to explore when the sender can
strictly benefit from persuasion followed by strategic reporting.

We define the value of the persuasion process as the difference between the sender’s expected payoff
from her optimal experiment choice and that from choosing the uninformative experiment τ0. The
sender benefits from persuasion if the value of persuasion is strictly positive. We assume the sender
always chooses τ0 if the value of persuasion is zero. Then, she benefits from the persuasion process if
and only if she selects an informative experiment in the information design stage. Obviously, if Û is
concave, the sender does not benefit from the persuasion process for any prior belief. We then have the
following finding.

Proposition 5. The sender benefits from the persuasion process if and only if she transmits information
in the reporting stage. For any prior µ that satisfies αR(µ) =

¯
a, the sender benefits from the persuasion

process.
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The first statement in Proposition 5 comes from the fact that a total-pooling experiment is always
worse than τ0, because a total-pooling experiment does not transmit any information to the receiver
but incurs positive reporting cost while τ0 transmits no information with no cost. Hence, the sender
never chooses a total-pooling experiment.19 This indicates the sender benefits from persuasion if and
only if she transmits information in the signaling subgame.

The second statement provides one condition that guarantees positive value of persuasion. The
condition is that the receiver takes the lowest action after obtaining no information, under which, for
all t ≤ µ, Û(t) = U(

¯
a) because the receiver’s optimal action αR weakly increases in types. Compared

with choosing τ0, the sender can be better off through transmitting information to the receiver. For
example, choosing the fully informative experiment τ̄ = (tL, tH ; 1− µ, µ) can transmit information and
achieve E(τ̄ ) > E(τ0). In the equilibrium induced by τ̄ , type tL separates or partially pools, because
separation is more beneficial than total-pooling, i.e., Û(tL) > Û(µ)−c(tL,m). Then, tL obtains a payoff
Û(tL) = U(

¯
a). If type tH sends mc(tH), it separates and its payoff is Û(tH) > U(

¯
a); otherwise, tL

must be indifferent between sending mc(tL) and tH ’s equilibrium message, and thus, the single-crossing
condition guarantees tH obtains a payoff strictly higher than Û(tL). Therefore, E(τ̄ ) > U(

¯
a).

Further, we derive one category of the sufficient condition for the sender selecting an informative
experiment. Proposition 4 provides the conditions under which it is always more advantageous for the
sender to distance the two types. Using this, our exercise is making the conditions held at the prior belief
µ, that is, we ensure that there exists t̃2 such that among all experiments (t1, t̃2; τ1, τ2), the sender’s
expected payoff decreases with t1 around t1 = µ.

Corollary 3. The sender benefits from the persuasion process if the following three conditions are
satisfied.

1. Given any m, c(t,m) is concave in t.

2. There exists t2 > µ such that Û(µ) ≤ Û(t2)− c(µ,mc(t2)).

3. ∂
∂t [Û(t) + c(t,m)] < 0 at t = µ, for m ≥ mc(µ).

By analogy with Proposition 4, we also derive the “symmetric” conditions for τ0 being optimal.
Obviously, when Û is concave in t, τ0 is optimal. The following conditions sustain the property that
for any experiment with types t1 and t2, given any t2, the expected payoff increases with t1, and thus,
any informative experiment is worse than τ0.

Corollary 4. The sender must choose the uninformative experiment if the following three conditions
are satisfied.

1. Given any m, c(t,m) is strictly convex in t.

2. ∀ t1 < µ < t2, Û(t1) ≤ Û(t2)− c(t1,mc(t2)).
19This conclusion relies on the costless truth-telling assumption. If c(t,mc(t)) ≥ 0 (as the costless truth-telling assump-

tion relaxed in Section 5), a total-pooling experiment can be optimal.
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3. Û(t) + c(t,m) is increasing in t, for t ≤ µ, m ≥ mc(µ).

6.3 Optimal Experiment Varying with Cost Intensity: the Case of Linear Utility

This subsection studies a specification of our framework that permits explicit characterization of an
optimal experiment and comparative statics with respect to the intensity of the reporting cost.

We consider the following specification. The sender’s utility U = a, linear in the receiver’s action.20

The receiver’s utility is V H = −(a − H)2 and V L = −(a − L)2, for the respective two states. The
two players’ prior belief is P (H) = µ. The highest message m = 1, and then m ∈ [0, 1]. The sender’s
reporting cost is K · c(t,m), where K > 0 is a scale parameter. We maintain the assumption that
the minimum cost Kc(t,mc(t)) = 0 for any result t. The receiver’s action space is A = [a, 1], where
0 < a < µ. The receiver’s optimal action given any t is depicted in Figure 5:

1

t
0 1

¯
a

Û = αR(t)

Figure 5: Bounded action space

Concave Cost Structure First, we illustrate the situation in which the cost structure Kc(t,m) is
concave in types. Suppose τ ∗ is informative; then, τ ∗ consists of two types denoted by t∗1 and t∗2. Since
Û is convex and c is concave in t, by Lemma 3, t∗2 = tH is optimal for any given t∗1. Then, let us prove
t∗1 = tL. If

¯
a ≤ t∗1 < µ, E(τ ∗) ≤ E(τ0). If tL ≤ t∗1 < ¯

a and αR(t∗1) =
¯
a, as t∗1 decreases, t∗2 can utilize less

costly message for separation or obtain a higher pooling action, that increases both types’ equilibrium
payoffs. Moreover, t∗2 is allocated with the highest probability when t∗1 = tL.

Corollary 5. In this linear specification, if given any m, the cost function Kc(t,m) is strictly concave in
types, the optimal experiment is either the fully informative experiment or the uninformative experiment.
The fully informative experiment induces a separating equilibrium if K ≥ 1−

¯
a

c(tL,m) , and induces a pooling
equilibrium otherwise.

Based on this corollary, we only need to compare the fully informative experiment τ̄ = (tL, tH ; 1−
µ, µ) and τ0 to determine the optimal experiment. E(τ̄ ) changes continuously with the scale of cost

20The sender’s utility can be any linear and increasing function of a, which does not affect the conclusions.
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K, while E(τ0) = Û(µ) is fixed. Therefore, as K increases, the sender’s optimal experiment choice will
change from τ0 to τ̄ at a certain threshold value of K. Consequently, the receiver’s expected payoff is
discontinuous in K such that as the scale of reporting cost expands, the receiver’s payoff would jump
at a certain threshold because the sender will suddenly choose the fully informative experiment and
transmit information.

Convex Cost Structure Then, we study the situation in which the cost is strictly convex in types.

Corollary 6. In this linear specification, if given any m, the cost function Kc(t,m) is strictly convex
in types, the optimal experiment is either the uninformative experiment or a separating experiment
containing tL, denoted by (tL, t2; τ1, τ2). Moreover:

1. When K ≥ 1−
¯
a

c(tL,m) , the sender chooses the fully informative experiment.

2. When K ≤ µ−
¯
a

c(tL,m) , the sender chooses the uninformative experiment.

By Proposition 1 and Corollary 1, the sender chooses a separating experiment with at most two
types. Intuitively, when the cost is high, the optimal experiment is τ̄ , the same as that in Bayesian
persuasion. When the cost is low, any experiment (tL, t2; τ1, τ2) induces a pooling equilibrium, so τ0 is
optimal. In Corollary 7, we explicitly characterize the optimal experiment when c = (m− t)2.

Corollary 7. In this linear specification, when the cost function is K(m − t)2, the sender’s expected
payoff from the optimal experiment weakly increases with K.

1. When K ≥ 1−
¯
a, the sender chooses the fully informative experiment.

2. When 1 − 1
2¯
a −

√
1
4¯
a2 −

¯
a+ ¯

a
µ < K ≤ 1 −

¯
a, the sender chooses experiment (tL, t̃2; τ1, τ2), where

t̃2 =
¯
a+K.

3. When K ≤ 1− 1
2¯
a−

√
1
4¯
a2 −

¯
a+ ¯

a
µ , the sender chooses the uninformative experiment.

By Corollary 6, the optimal experiment is either τ0 or (tL, t2; τ1, τ2). For experiment (tL, t2; τ1, τ2),
higher t2 has stronger ability to distinguish itself and improve the sender’s expected payoff from this
experiment. Therefore, t2 is the highest type that can separate from tL. Hence, t2 = tH or satisfies

Û(tL) = Û(t2)− c(tL,m),

that is, t2 = min{tH ,
¯
a + K}. That t2 weakly increases with K means when the sender has to spend

higher cost manipulating, she would select a more informative experiment. The reason is that she is
able to credibly transmit a higher result through reporting if she has stronger commitment power.

We further compare these two potentially optimal experiments to ultimately obtain the optimal
one. The expected payoff from (tL, t2 =

¯
a+K; τ1, τ2), K ≤ 1−

¯
a, is increasing in K because given the

lower bound Û(tL) =
¯
a, higher reporting cost lets t2 distinguish itself more easily. When K is so low

that t2 needs to waste much cost to get rid of the low type’s manipulation, the sender chooses τ0 and
both players gain no information. Only when K is higher than a threshold value, the sender chooses
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the informative experiment (tL,
¯
a + K; τ1, τ2). As the reporting cost becomes high enough, the sender

always chooses the fully informative experiment.

Note that the increase in fabrication costs may not change the optimal experiment choice, as the
sender will always choose the uninformative experiment until the fabrication cost reaches a critical
value. Moreover, the sender’s choice does not change continuously with the scale of cost, as her choice
will jump to an informative experiment at a critical value and the receiver will suddenly receive useful
information.

7 Conclusion

We study the optimal information design when a sender has commitment to conducting an experiment
but cannot commit to reporting the obtained result truthfully. In our model, to persuade a receiver,
the sender can report a message to reveal information and has to bear a cost that depends on both the
realized result and the message reported. The cost has strictly decreasing differences, that implies the
sender’s marginal cost with respect to messages is higher if she obtains a worse result. The cost function
we set has many economic implications that can represent the sender’s manipulation cost, signaling cost,
and so on. This model bridges Bayesian persuasion and costly lying (or signaling).

In this framework, our methodology (Proposition 1) to characterize the optimal experiment allows
us to greatly simplify the analysis. We further find whether the sender will choose an experiment whose
results can be fully revealed is determined by the properties of the cost structure. Built on this, we
show that it is possible for the sender ex ante to prefer strategic reporting over commitment to truthful
reporting if truth-telling, although it incurs the minimum cost, is costly.

In Section 6.3, we conduct comparative statics analysis with respect to cost intensity when the
sender has linear utility. The cost intensity can influence the sender’s strategy through two channels.
First, increasing the cost intensity can make the sender design a more informative experiment. Second,
higher cost intensity can enable the sender to transmit more information without changing the choice
of experiment. Our findings rely on the assumption that the sender’s utility is linear. If we consider a
more general utility function form, we may obtain the opposite conclusion: higher cost intensity leads
to the sender choosing a less informative experiment and cannot facilitate information transmission.
In Lipnowski et al. (2022), a crucial conclusion is that lower credibility in the result reporting stage
may make the receiver better off. This intuition may also be derived in a strategic and costly reporting
scenario, which we leave for future research.
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Appendix A. Proofs

First, we provide three preliminary lemmas useful for follow-up proofs. Then, we provide proofs of all the
conclusions.

Lemma A.1. For any t ∈ [0, 1], there exists a unique αR(ti) ≡ arg maxa∈[
¯
a,+∞) V (ti, a). Moreover,

• if αR(tL) >
¯
a, αR is continuously differentiable and strictly increasing in t ∈ [0, 1];

• if αR(tL) =
¯
a, there exists a unique t̃ such that for t ≤ t̃, αR =

¯
a, and for t̃ ≤ t ≤ tH , αR is continuously

differentiable and strictly increasing in t.

Proof. From V (t, a) ≡ tV H + (1− t)V L, we have

∂V

∂a
= t

∂V H

∂a
+ (1− t)∂V

L

∂a
,

∂2V

∂a2
= t

∂2V H

∂a2
+ (1− t)∂

2V L

∂a2
< 0,

∂2V

∂a∂t
=
∂V H

∂a
− ∂V L

∂a
> 0.

Since ∂V (tH ,a)
∂a

∣∣
a=aH

= ∂V H

∂a

∣∣
a=aH

= 0, αR(tH) = aH >
¯
a. Then, ∂V (tL,a)

∂a

∣∣
a=aH

< ∂V (tH ,a)
∂a

∣∣
a=aH

= 0 and
∂2V
∂a2 < 0 implies that a unique αR(tL) < aH exists.

If αR(tL) >
¯
a, ∂V (tL,a)

∂a

∣∣
a=αR(tL)

= ∂V L

∂a

∣∣
a=αR(tL)

= 0. Then,

∂V (t, a)

∂a

∣∣
a=αR(tL)

= t
∂V H

∂a

∣∣
a=αR(tL)

+ (1− t)∂V
L

∂a

∣∣
a=αR(tL)

≥ 0,

∂V (t, a)

∂a

∣∣
a=αR(tH)

= t
∂V H

∂a

∣∣
a=αR(tH)

+ (1− t)∂V
L

∂a

∣∣
a=αR(tH)

≤ 0.
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Therefore, for any t, there exists a unique αR(t) that satisfies ∂V (t,a)
∂a

∣∣
a=αR(t)

= 0. According to the implicit
function theorem, αR(t) is continuously differentiable with

dαR(t)

dt
= − Vat(t, α

R(t))

Vaa(t, αR(t))
> 0.

If αR(tL) =
¯
a, ∂V (tL,a)

∂a

∣∣
a=

¯
a
≤ 0. Because ∂V (tH ,a)

∂a

∣∣
a=

¯
a
> 0, there exists a unique t̃ such that ∂V (t̃,a)

∂a

∣∣
a=

¯
a

= 0.

For t ≤ t̃, ∂V (t,a)
∂a

∣∣
a=

¯
a
≤ ∂V (t̃,a)

∂a

∣∣
a=

¯
a
≤ 0, so αR(t) =

¯
a. For t ≥ t̃, ∂V (t̃,a)

∂a

∣∣
a=αR(t̃)

= 0, and then, similarly to the
proof above, αR is continuously differentiable and strictly increasing in t.

Lemma A.2. The message strategies have the following properties.

1. mc(t) weakly increases in t. For any two types t̃ < t̃′, if mc(t̃) = mc(t̃
′), then mc(t̃) = mc(t̃

′) = 0.

2. (Message Monotonicity) In a sequential equilibrium of any signaling subgame, if σ(m∗j |tj) > 0 and σ(m∗k|tk) >

0, then the two equilibrium messages satisfy m∗j ≤ m∗k for any tj < tk, tj , tk ∈ T .

Proof. 1. Suppose ∃ t1 < t2 s.t. mc(t1) > mc(t2). Since ∂2c
∂t∂m < 0,

∂

∂t
[c(t,mc(t1))− c(t,mc(t2))] < 0,

that implies
c(t2,mc(t1))− c(t2,mc(t2)) < c(t1,mc(t1))− c(t1,mc(t2)).

Because c(t1,mc(t1))− c(t1,mc(t2)) < 0, we have c(t2,mc(t1)) < c(t2,mc(t2)), which leads to a contradic-
tion.

Suppose there exist two types t̃ < t̃′ such that mc(t̃) = mc(t̃
′) > 0. Since mc < m, we have cm(t̃, mc(t̃)) =

cm(t̃′,mc(t̃
′)) = 0, which contradicts the assumption that ∂2c

∂t∂m < 0. Therefore, mc(t̃) = mc(t̃
′) must be

the lowest message 0.

2. Let a∗(m∗j ) and a∗(m∗k) be the receiver’s actions in response to m∗j and m∗k in a sequential equilibrium,
respectively. Suppose m∗j > m∗k, tj < tk. Since U(a∗(m∗j )) − c(tj ,m

∗
j ) ≥ U(a∗(m∗k)) − c(tj ,m

∗
k), then

U(a∗(m∗j )) − c(tk,m∗j ) > U(a∗(m∗k)) − c(tk,m∗k). Type tk will deviate from reporting m∗k, leading to a
contradiction.

Lemma A.3. If mi(τ ) exists, we have mi(τ ) ≥ mc(ti).

Proof. (Remind that the separating message mi(τ ) is defined in Section 3.) m1(τ ) = mc(t1) always exists. If
m2(τ ) exists, m1(τ ) = mc(t1) < m. Suppose m2(τ ) < mc(t2). By the message monotonicity in Lemma A.2,
m2(τ ) > m1(τ ) = mc(t1). Because c is strictly quasi-convex inm, c(t1,m2(τ )) < max{c(t1,mc(t1)), c(t1,mc(t2))} =

c(t1,mc(t2)). Then

Û(t1)− c(t1,m1(τ )) ≥ Û(t2)− c(t1,m2(τ )) > Û(t2)− c(t1,mc(t2)).

That is, t2 will report mc(t2) instead of m2(τ ), which leads to a contradiction. Thus, m2(τ ) ≥ mc(t2).
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If m3(τ ) exists, m2(τ ) < m. Then we can prove m3(τ ) ≥ mc(t3) by the same logic as above. The same
argument applies to any mi(τ ), i > 2.

Proof of Lemma 1

Proof. See Proposition 4.1-4.4 in Cho and Sobel (1990). Since the setting in our model satisfies their assumptions
(A0-A4 in Section 4 in Cho and Sobel (1990)), their conclusions about the characterization and uniqueness of
the D1 equilibrium apply.

Proof of Lemma 2

Proof. Consider any pooling experiment τ = (t1, . . . , tn; τ1, . . . , τn), n ≥ 2, that induces the D1 equilibrium in
which types ti ≥ tp pool and type(s) ti < tp (if any) separate. That is, type ti < tp sends mi(τ ), and type
ti ≥ tp+1 sends m, and type tp sends m with probability q ∈ (0, 1] and mp(τ ) with probability 1 − q. In the
following three cases, we show τ cannot be optimal if the condition in Lemma 2 is violated.

1. When q = 1 and p > 1, type ti ≥ tp sends m and the receiver takes the action αR(φp(τ , 1)) after
receiving m. Suppose ECPτ > C(φp(τ , 1),m)

∣∣
[tp−1,1]

.

There must exist two points (t′p, c(t
′
p,m)) and (t′p+1, c(t

′
p+1,m)), where t′p, t

′
p+1 ∈ [tp−1, 1] and t′p ≤

φp(τ , 1) < t′p+1, such that rc(t′p,m) + (1 − r)c(t′p+1,m) = C(φp(τ , 1),m)
∣∣
[tp−1,1]

and rt′p + (1 − r)t′p+1 =

φp(τ , 1), where r =
t′p+1−φp(τ ,1)

t′p+1−t′p
∈ (0, 1]. Then, we have the following three cases:

(a) t′p > tp−1 and r < 1

We construct a new experiment τ ′ = (t1, . . . , tp−1, t
′
p, t
′
p+1; τ1, . . . , τp−1, r

∑n
i=p τi, (1−r)

∑n
i=p τi) and

prove E(τ ) < E(τ ′) as follows. Since ∀ i < p, mi(τ
′) = mi(τ ), and φp(τ ′, 1) = φp(τ , 1), then in the

D1 equilibrium τ ′ induces, t1, . . . , tp−1 still separate and mp(τ
′) exists.

When Û(t′p)− c(t′p,mp(τ
′)) ≤ Û(φp(τ

′, 1))− c(t′p,m), τ ′ induces a pooling equilibrium in which type
ti, ∀ i < p, sends mi(τ

′) while types tp and tp+1 pool at m. Then, fτ ′(ti) = fτ (ti), i < p. Thus,

E(τ ) =

p−1∑
i=1

τifτ (ti) +

n∑
i=p

τi[Û(φp(τ , 1))− c(ti,m)]

=

p−1∑
i=1

τifτ ′(ti) + r
( n∑
i=p

τi

)
Û(φp(τ

′, 1)) + (1− r)
( n∑
i=p

τi

)
Û(φp(τ

′, 1))−
n∑
i=p

τic(ti,m)

<

p−1∑
i=1

τifτ ′(ti) +
( n∑
i=p

τi

)[
rÛ(φp(τ

′, 1)) + (1− r)Û(φp(τ
′, 1))− C(φp(τ ′, 1),m)

∣∣
[tp−1,1]

]

=

p−1∑
i=1

τifτ ′(ti) +
[
r

n∑
i=p

τi

][
Û(φp(τ

′, 1))− c(t′p,m)
]

+
[
(1− r)

n∑
i=p

τi

][
Û(φp(τ

′, 1))− c(t′p+1,m)
]

=E(τ ′).

(A.1)

When Û(t′p)−c(t′p,mp(τ
′)) ≥ Û(t′p+1)−c(t′p,m), both t′p and t′p+1 separate. Because t′p+1 > φp(τ

′, 1)
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and mc(t
′
p+1) ≤ mp+1(τ ′) ≤ m, based on equation (A.1), we have

E(τ ) <

p−1∑
i=1

τifτ ′(ti) +
[
r

n∑
i=p

τi

][
Û(φp(τ

′, 1))− c(t′p,m)
]

+
[
(1− r)

n∑
i=p

τi

][
Û(φp(τ

′, 1))− c(t′p+1,m)
]

<

p−1∑
i=1

τifτ ′(ti) +
[
r

n∑
i=p

τi

][
Û(t′p)− c(t′p,mp(τ

′))
]

+
[
(1− r)

n∑
i=p

τi

][
Û(t′p+1)− c(t′p+1,mp+1(τ ′))

]
=E(τ ′).

When Û(φp(τ
′, 1))− c(t′p,m) < Û(t′p)− c(t′p,mp(τ

′)) < Û(t′p+1)− c(t′p,m), t′p+1 would report m, and
t′p would report mp(τ

′) and m with probability 1− q′ and q′, respectively, where q′ ∈ (0, 1) satisfies
Û(t′p)− c(t′p,mp(τ

′)) = Û(φp(τ
′, q′))− c(t′p,m). Since φp(τ ′, q′) > φp(τ

′, 1),

E(τ ) <

p−1∑
i=1

τifτ ′(ti) +
[
r

n∑
i=p

τi

][
Û(φp(τ

′, 1))− c(t′p,m)
]

+
[
(1− r)

n∑
i=p

τi

][
Û(φp(τ

′, 1))− c(t′p+1,m)
]

<

p−1∑
i=1

τifτ ′(ti) +
[
r

n∑
i=p

τi

][
Û(t′p)− c(t′p,mp(τ

′))
]

+
[
(1− r)

n∑
i=p

τi

][
Û(φp(τ

′, q′))− c(t′p+1,m)
]

=E(τ ′).

(b) r = 1 or t′p = φp(τ , 1) > tp−1

We construct a new experiment τ ′ = (t1, . . . , tp−1, t
′
p; τ1, . . . , τp−1,

∑n
i=p τi). It would induce a sepa-

rating equilibrium in which mi(τ
′) = mi(τ ), i < p, and mp(τ

′) ≤ m. Thus,

E(τ ) =

p−1∑
i=1

τifτ (ti) +

n∑
i=p

τi[Û(φp(τ , 1))− c(ti,m)]

=

p−1∑
i=1

τifτ ′(ti) +
( n∑
i=p

τi

)
Û(t′p)−

n∑
i=p

τic(ti,m)

<

p−1∑
i=1

τifτ ′(ti) +
( n∑
i=p

τi

)[
Û(t′p)− C(φp(τ ′, 1),m)

∣∣
[tp−1,1]

]

≤
p−1∑
i=1

τifτ ′(ti) +
( n∑
i=p

τi

)[
Û(t′p)− c(t′p,mp(τ

′))
]

=E(τ ′).
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(c) t′p = tp−1, t′p+1 > φp(τ , 1)

We construct a new experiment τ ′ = (t1, . . . , tp−1, t
′
p+1; τ1, . . . , τp−2, τp−1+r

∑n
i=p τi, (1−r)

∑n
i=p τi),

then mi(τ
′) = mi(τ ), i ≤ p − 1. Since Û(tp−1) − c(tp−1,mp−1(τ )) ≥ Û(φp(τ , 1)) − c(tp−1,m) and

φp(τ , 1) > φp−1(τ ′, 1), we have Û(tp−1)− c(tp−1,mp−1(τ ′)) > Û(φp−1(τ ′, 1))− c(tp−1,m).

If Û(tp−1)− c(tp−1,mp−1(τ ′)) ≥ Û(t′p+1)− c(tp−1,m), τ ′ induces a separating equilibrium and

E(τ ) <

p−1∑
i=1

τifτ (ti) +
[
r

n∑
i=p

τi

][
Û(φp(τ , 1))− c(tp−1,m)

]
+
[
(1− r)

n∑
i=p

τi

][
Û(φp(τ , 1))− c(t′p+1,m)

]

<

p−1∑
i=1

τifτ ′(ti) +
[
r

n∑
i=p

τi

][
Û(tp−1)− c(tp−1,mp−1(τ ′))

]
+
[
(1− r)

n∑
i=p

τi

][
Û(t′p+1)− c(t′p+1,mp(τ

′))
]

=E(τ ′).

If Û(tp−1) − c(tp−1,mp−1(τ ′)) < Û(t′p+1) − c(tp−1,m), τ ′ induces a partial-pooling equilibrium
in which tp−1 reports m with probability q′ ∈ (0, 1) that satisfies Û(tp−1) − c(tp−1,mp−1(τ ′)) =

Û(φp−1(τ ′, q′))− c(tp−1,m). Because φp−1(τ ′, q′) ≥ φp(τ , 1), we must have E(τ ) < E(τ ′).

2. When q = 1 and p = 1, all types pool at m. Suppose ECPτ > C(µ,m)
∣∣
[0,1]

.

There must exist two points (t′1, c(t
′
1,m)) and (t′2, c(t

′
2,m)), 0 ≤ t′1 ≤ µ < t′2 ≤ 1, such that rc(t′1,m) +

(1− r)c(t′2,m) = C(µ,m)
∣∣
[0,1]

and rt′1 + (1− r)t′2 = µ, where r =
t′2−µ
t′2−t′1

∈ (0, 1]. If r < 1, as the above case
(a) and (b), we can similarly construct a new experiment τ ′ = (t′1, t

′
2; r, 1 − r) and prove E(τ ) < E(τ ′),

no matter which kind of D1 equilibrium τ ′ would induce. If r = 1, the uninformative experiment (µ; 1) is
strictly better than τ .

3. When 0 < q < 1, we have Û(tp)− c(tp,mp(τ )) = Û(φp(τ , q))− c(tp,m). If ECPτ > C(φp(τ , q),m)
∣∣
[tp,1]

,
we can similarly prove τ is not optimal based on the above analysis.

Proof of Proposition 1

Proof. Part 1. We prove for any separating experiment with more than two types, we can construct a separating
experiment with two (or one) types that induces weakly higher expected payoff.

Consider any separating experiment τ = (t1, . . . , tn; τ1, . . . , τn), n ≥ 3. The sender’s expected payoff is
E(τ ) =

∑n
i=1 τifτ (ti), where fτ (ti) = Û(ti)− c(ti,mi(τ )), and Fτ (µ) ≥ E(τ ). There must exist tj , tk ∈ T with

tj ≤ µ < tk such that rfτ (tj) + (1− r)fτ (tk) = Fτ (µ) and rtj + (1− r)tk = µ, where r = tk−µ
tk−tj ∈ (0, 1].

If tj = µ, the uninformative experiment (µ; 1) is weakly better than τ . Next, we show if tj < µ, the
experiment τ ′ = (tj , tk; r, 1− r) is weakly better than τ . Since m1(τ ′) = mc(tj) ≤ mj(τ ), by the IC conditions

32



and single-crossing condition, m2(τ ′) must exist and m2(τ ′) ≤ mk(τ ). Thus, τ ′ is a separating experiment and

E(τ ′) = r
[
Û(tj)− c(tj ,m1(τ ′))

]
+ (1− r)

[
Û(tk)− c(tk,m2(τ ′))

]
≥ rfτ (tj) + (1− r)fτ (tk)

= Fτ (µ) ≥ E(τ ).

Part 2. We prove that if a pooling experiment τ is optimal, it needs at most one type that separates with positive
probability.

Based on Lemma 2, we only need to consider the experiment that includes two pooling types because at
most two types are needed to approach any convex lower closure. Then, we consider any pooling experiment
τ = (t1, . . . , tn; τ1, . . . , τn), n ≥ 2, that induces tn−1 and tn to pool. Specifically, type tn−1 reports m with
probability q ∈ (0, 1] and mn−1(τ ) with probability 1 − q. Next, we show τ is weakly dominated by other
experiment if τ induces more than one type to separate with positive probability.

1. When q = 1, τ induces ti ≤ tn−2 to separate with mi(τ ) and types tn−1 and tn to pool at m. Suppose
n ≥ 4.

There must exist two points (tj , fτ (tj)) and (tk, fτ (tk)), tj , tk ∈ T , tj ≤ µ < tk, such that rfτ (tj) + (1 −
r)fτ (tk) = Fτ (µ) and rtj+(1−r)tk = µ, where r = tk−µ

tk−tj ∈ (0, 1]. If tj = µ, the uninformative experiment
is weakly better than τ . If tj < µ, we consider the following four cases.

(a) k ≤ n− 2

Based on the proof in Part 1, experiment τ ′ = (tj , tk; r, 1− r) is weakly better than τ .

(b) j = n− 1

Denote
t′n−1 = φn−1(τ , 1) =

τn−1tn−1 + τntn
τn−1 + τn

and T ′ = {t1, . . . , tn−2, t
′
n−1}. Let f : T ′ → R be a function such that f(ti) = fτ (ti), i ≤ n− 2, and

f(t′n−1) = τn−1fτ (tn−1)+τnfτ (tn)
τn−1+τn

. Denote F(t̂, f) as the concave closure of f , where t̂ ∈ co(T ′) and f
is defined on T ′. Since t1 < · · · < tn−2 < µ < t′n−1, there exists th ∈ T ′, h ≤ n − 2 that satisfies

r′f(th) + (1 − r′)f(t′n−1) = F(µ, f) and r′th + (1 − r′)t′n−1 = µ, where r′ =
t′n−1−µ
t′n−1−th

∈ (0, 1). Then,
we can construct a new experiment τ ′ = (th, tn−1, tn; r′, τn−1

τn−1+τn
(1 − r′), τn

τn−1+τn
(1 − r′)) and show

its expected payoff is weakly higher than τ as follows.

Since th separates in the equilibrium induced by τ ,

Û(th)− c(th,mh(τ )) ≥ Û(φn−1(τ , 1))− c(th,m).

Because φ2(τ ′, 1) = φn−1(τ , 1), we have

Û(th)− c(th,mc(th)) ≥ Û(φ2(τ ′, 1))− c(th,m),

which means τ ′ induces th to separate with her cost-minimizing message. If τ ′ induces tn−1 and
tn to pool at m, we have fτ ′(tn−1) = fτ (tn−1) and fτ ′(tn) = fτ (tn). Thus, E(τ ′) ≥ F(µ, f) ≥
E(τ ). Otherwise, tn−1 separates with positive probability, implying Û(tn−1) − c(tn−1,m2(τ ′)) >

Û(φ2(τ ′, 1))− c(tn−1,m). Hence, fτ ′(tn−1) > fτ (tn−1) and tn gets a higher receiver action such that
fτ ′(tn) > fτ (tn), which makes E(τ ′) > F(µ, f) ≥ E(τ ).

33



(c) k = n− 1

The proof is similar to that for the above case (b) j = n− 1.

(d) j ≤ n− 2 and k = n

We can construct an experiment τ ′ = (tj , tn; r, 1−r). Since in the equilibrium induced by experiment
τ , tj separates, we have

Û(tj)− c(tj ,mc(tj)) ≥ Û(tj)− c(tj ,mj(τ )) ≥ Û(φn−1(τ , 1))− c(tj ,m).

Thus, whether τ ′ induces a separating or pooling equilibrium, E(τ ′) ≥ Fτ (µ) ≥ E(τ ).

2. When 0 < q < 1, τ induces tn−1 to separate with probability 1− q. Similarly, we can prove τ is weakly
dominated by other experiment if it contains any other type(s) besides types tn−1 and tn.

Proof of Corollary 1

Proof. The first condition: Consider any pooling experiment τ = (t1, . . . , tn; τ1, . . . , τn). If τ induces a pure
strategy pooling equilibrium in which type ti, ∀ i ≥ p, pool at m and all other types (if any) separate, according
to the proof of Lemma 2, we can construct experiment τ ′ = (t1, . . . , tp−1, φp(τ , 1); τ1, . . . , τp−1,

∑n
i=p τi), where

φp(τ , 1) ≥ µmust hold. Then, τ ′ would induce a separating equilibrium with an expected payoff higher than τ . If
τ induces a mixed strategy partial-pooling equilibrium in which type ti, ∀ i > p, reports m and type tp reports m
with probability q ∈ (0, 1), we can construct experiment τ̃ = (t1, . . . , tp−1, tp, φp(τ , q); τ1, . . . , τp−1, (1−q)τp, qτp+∑n
i=p+1 τi), where φp(τ , q) ≥ µ must hold. Then, τ̃ would induce a separating equilibrium with an expected

payoff higher than τ . Therefore, any pooling experiment cannot be optimal, that is, the optimal experiment
must be separating.

The second condition: By Proposition 1, the optimal experiment contains at most three results. Since
Û(t) ≥ Û(tL) > Û(tH)−c(t,m), any experiment containing two results induces a separating equilibrium. Consider
any experiment with three results, denoted by τ = (t1, t2, t3; τ1, τ2, τ3). Since Û(t1) > Û(tH) − c(t1,m), t1
separates withmc(t1). If Û(t1) ≥ Û(t2)−c(t1,mc(t2)), t2 separates withmc(t2) because Û(t2) > Û(tH)−c(t2,m).
If Û(t1) < Û(t2)− c(t1,mc(t2)), we have Û(t1) = Û(t2)− c(t1,m2(τ )). Because

Û(t2)− c(t2,m2(τ )) > Û(t2)− c(t1,m2(τ )) = Û(t1) > Û(tH)− c(t2,m),

τ induces a separating equilibrium.

Proof of Proposition 2

Proof. If the optimal separating experiment τ s = (t1, t2; τ1, τ2) satisfies c(t2,m2(τ s)) > C(t2,m)
∣∣
[t1,1]

, we can
find a partial-pooling experiment that is strictly better than τ s, which means the optimal experiment must
induce a partial-pooling equilibrium.

Since c(t2,m) ≥ c(t2,m2(τ s)) > C(t2,m)
∣∣
[t1,1]

, there must exist two points (t′2, c(t
′
2,m)) and (t′′2 , c(t

′′
2 ,m)),

t1 ≤ t′2 < t2 < t′′2 ≤ 1, such that rc(t′2,m) + (1 − r)c(t′′2 ,m) = C(t2,m)
∣∣
[t1,1]

and rt′2 + (1 − r)t′′2 = t2, where

r =
t′′2−t2
t′′2−t′2

.

If t′2 > t1, we then show there exists a partial-pooling experiment τ ′ = (t1, t
′
2, t
′′
2 ; τ1, τ2r, τ2(1−r)) that induces

E(τ ′) > E(τ s). Since φ2(τ ′, 1) = t2, then Û(t1) ≥ Û(φ2(τ ′, 1))−c(t1,m), implying in the D1 equilibrium induced
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by τ ′, t1 separates and m2(τ ′) exists.

• If Û(t′2)− c(t′2,m2(τ ′)) ≥ Û(t′′2)− c(t′2,m), t′2 would separate. Then, τ ′ induces a separating equilibrium
with an expected payoff strictly higher than E(τ s), which is impossible.

• If Û(t′2)− c(t′2,m2(τ ′)) < Û(t′′2)− c(t′2,m), τ ′ would induce a partial-pooling equilibrium. When Û(t′2)−
c(t′2,m2(τ ′)) ≤ Û(φ2(τ ′, 1)) − c(t′2,m), t′2 and t′′2 would pool at m, so E(τ ′) > E(τ s). When Û(t′2) −
c(t′2,m2(τ ′)) > Û(φ2(τ ′, 1)) − c(t′2,m), ∃ q ∈ (0, 1) s.t. Û(t′2) − c(t′2,m2(τ ′)) = Û(φ2(τ ′, q)) − c(t′2,m),
that means t′2 would report m with probability q. Thus,

E(τ ′) = τ1Û(t1) + τ2r[Û(φ2(τ ′, q))− c(t′2,m)] + τ2(1− r)[Û(φ2(τ ′, q))− c(t′′2 ,m)]

> τ1Û(t1) + τ2r[Û(φ2(τ ′, 1))− c(t′2,m)] + τ2(1− r)[Û(φ2(τ ′, 1))− c(t′′2 ,m)]

> E(τ s).

If t′2 = t1, we then show experiment τ ′′ = (t1, t
′′
2 ; τ1 + τ2r, τ2(1 − r)) induces a partial-pooling equilibrium

with E(τ ′′) > E(τ s). Since
Û(t1) ≥ Û(t2)− c(t1,m) > Û(µ)− c(t1,m),

t1 would not report m with probability 1.

• If Û(t1) ≥ Û(t′′2)− c(t1,m), τ ′′ induces a separating equilibrium. Then,

E(τ ′′) = (τ1 + τ2r)Û(t1) + τ2(1− r)[Û(t′′2)− c(t′′2 ,m2(τ ′′))]

≥ τ1Û(t1) + τ2r[Û(t′′2)− c(t1,m)] + τ2(1− r)[Û(t′′2)− c(t′′2 ,m)]

> E(τ s),

which is impossible.

• If Û(t1) < Û(t′′2)− c(t1,m), τ ′′ induces a partial-pooling equilibrium. There exists q′ ∈ (0, 1) s.t. Û(t1) =

Û(φ1(τ ′′, q′))− c(t1,m), where φ1(τ ′′, q′) ≥ t2. Then, t1 sends m with probability q′ and

E(τ ′′) = (τ1 + τ2r)Û(t1) + τ2(1− r)[Û(φ1(τ ′′, q′))− c(t′′2 ,m)]

≥ τ1Û(t1) + τ2r[Û(t2)− c(t1,m)] + τ2(1− r)[Û(t2)− c(t′′2 ,m)]

> E(τ s).

Proof of Proposition 3

Proof. In this proof, we show that under either Condition 1 or Condition 2, there exists a pooling experiment
that induces an expected payoff strictly higher than G(µ).

Under Condition 1 that Û(µ)− C(µ,m)
∣∣
[0,1]

> G(µ).

If C(µ,m)
∣∣
[0,1]

= c(µ,m), Û(µ)− C(µ,m)
∣∣
[0,1]

= Û(µ)− c(µ,m) < g(µ) ≤ G(µ), which contradicts Condition
1. If C(µ,m)

∣∣
[0,1]

< c(µ,m), there exist two points (t̃, c(t̃, m)) and (t̃′, c(t̃′,m)), 0 ≤ t̃ < µ < t̃′ ≤ 1, such that

rc(t̃, m) + (1 − r)c(t̃′,m) = C(µ,m)
∣∣
[0,1]

and rt̃ + (1 − r)t̃′ = µ, where r = t̃′−µ
t̃′−t̃ ∈ (0, 1). Then, we consider the
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D1 equilibrium induced by experiment τ ′ = (t̃, t̃′; r, 1− r). Since

r[Û(µ)− c(t̃, m)] + (1− r)[Û(µ)− c(t̃′,m)]

= Û(µ)− C(µ,m)
∣∣
[0,1]

> G(µ) ≥ rg(t̃) + (1− r)g(t̃′)

and g(t̃′) = Û(t̃′)− c(t̃′,mc(t̃
′)) > Û(µ)− c(t̃′,m), we have Û(t̃)− c(t̃, mc(t̃)) = g(t̃) < Û(µ)− c(t̃, m). Therefore,

we find the experiment τ ′ induces a total-pooling equilibrium and

E(τ ′) = r[Û(µ)− c(t̃, m)] + (1− r)[Û(µ)− c(t̃′,m)] > G(µ).

Under Condition 2 that there exists experiment τ̃ = (t̃1, t̃2; τ̃1, τ̃2), where τ̃1g(t̃1) + τ̃2g(t̃2) = G(µ), that
satisfies Û(t̃1)− c(t̃1,mc(t̃1)) ≥ Û(t̃2)− c(t̃1,m) and c(t̃2,mc(t̃2)) > C(t̃2,m)

∣∣
[t̃1,1]

.

Because c(t̃2,m)) ≥ c(t̃2,mc(t̃2)) > C(t̃2,m)
∣∣
[t̃1,1]

, there exist two points (t̃, c(t̃, m)) and (t̃′, c(t̃′,m)), t̃1 ≤ t̃ <
t̃2 < t̃′ ≤ 1, such that γc(t̃, m) + (1− γ)c(t̃′,m) = C(t̃2,m)

∣∣
[t̃1,1]

and γt̃+ (1− γ)t̃′ = t̃2, where γ = t̃′−t̃2
t̃′−t̃ .

If t̃ > t̃1, we then show experiment τ ′ = (t̃1, t̃, t̃
′; τ̃1, τ̃2γ, τ̃2(1−γ)) induces a partial-pooling equilibrium with

E(τ ′) > G(µ). Since φ2(τ ′, 1) = t̃2, then Û(t̃1) − c(t̃1,mc(t̃1)) ≥ Û(φ2(τ ′, 1)) − c(t̃1,m), implying in the D1
equilibrium induced by τ ′, t̃1 separates and m2(τ ′) exists.

• If Û(t̃)− c(t̃, m2(τ ′)) ≥ Û(t̃′)− c(t̃, m), t̃ would separate. Then, τ ′ induces a separating equilibrium with
an expected payoff strictly higher than G(µ), which is impossible.

• If Û(t̃) − c(t̃, m2(τ ′)) < Û(t̃′) − c(t̃, m), τ ′ would induce a partial-pooling equilibrium. When Û(t̃) −
c(t̃, m2(τ ′)) ≤ Û(φ2(τ ′, 1))−c(t̃, m), t̃ and t̃′ would pool atm, so E(τ ′) > G(µ). When Û(t̃)−c(t̃, m2(τ ′)) >

Û(φ2(τ ′, 1)) − c(t̃, m), ∃ q ∈ (0, 1) s.t. Û(t̃) − c(t̃, m2(τ ′)) = Û(φ2(τ ′, q)) − c(t̃, m), that means t̃ would
report m with probability q. Thus,

E(τ ′) = τ̃1[Û(t̃1)− c(t̃1,mc(t̃1))] + τ̃2γ[Û(φ2(τ ′, q))− c(t̃, m)] + τ̃2(1− γ)[Û(φ2(τ ′, q))− c(t̃′,m)]

> τ̃1[Û(t̃1)− c(t̃1,mc(t̃1))] + τ̃2γ[Û(φ2(τ ′, 1))− c(t̃, m)] + τ̃2(1− γ)[Û(φ2(τ ′, 1))− c(t̃′,m)]

>G(µ).

If t̃ = t̃1, we then show experiment τ ′′ = (t̃1, t̃
′; τ̃1 + τ̃2γ, τ̃2(1−γ)) induces a partial-pooling equilibrium with

E(τ ′′) > G(µ). Since
Û(t̃1)− c(t̃1,mc(t̃1)) ≥ Û(t̃2)− c(t̃1,m) > Û(µ)− c(t̃1,m),

t̃1 would not report m with probability 1.

• If Û(t̃1)− c(t̃1,mc(t̃1)) ≥ Û(t̃′)− c(t̃1,m), τ ′′ induces a separating equilibrium. Then,

E(τ ′′) = (τ̃1 + τ̃2γ)[Û(t̃1)− c(t̃1,mc(t̃1))] + τ̃2(1− γ)[Û(t̃′)− c(t̃′,m2(τ ′′))]

≥ τ̃1[Û(t̃1)− c(t̃1,mc(t̃1))] + τ̃2γ[Û(t̃′)− c(t̃1,m)] + τ̃2(1− γ)[Û(t̃′)− c(t̃′,m)]

>G(µ),

which is impossible.
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• If Û(t̃1)−c(t̃1,mc(t̃1)) < Û(t̃′)−c(t̃1,m), τ ′′ induces a partial-pooling equilibrium. There exists q′ ∈ (0, 1)

s.t. Û(t̃1) − c(t̃1,mc(t̃1)) = Û(φ1(τ ′′, q′)) − c(t̃1,m), where φ1(τ ′′, q′) ≥ t̃2. Then, t̃1 sends m with
probability q′ and

E(τ ′′) = (τ̃1 + τ̃2γ)[Û(t̃1)− c(t̃1,mc(t̃1))] + τ̃2(1− γ)[Û(φ1(τ ′′, q′))− c(t̃′,m)]

≥ τ̃1[Û(t̃1)− c(t̃1,mc(t̃1))] + τ̃2γ[Û(t̃2)− c(t̃1,m)] + τ̃2(1− γ)[Û(t̃2)− c(t̃′,m)]

>G(µ).

Proof of Lemma 3

Proof. For any experiment τ = (t1, t2; τ1, τ2), we consider the following three cases for different given value of t1.

1. If Û(t1) ≤ Û(µ)− c(t1,m), τ induces a total-pooling equilibrium, in which both types sends m. Since the
expected payoff from τ is E(τ ) = Û(µ)− [τ1c(t1,m) + τ2c(t2,m)] and c(t,m) is concave in t, then E(τ ) is
increasing with t2.

2. If Û(t1) ≥ Û(tH)− c(t1,m), τ induces a separating equilibrium.

(a) When for any t1 < µ < t2, Û(t1) ≤ Û(t2)− c(t1,mc(t2)) holds, we have

Û(t1) = Û(t2)− c(t1,m2(τ )). (A.2)

Then,

E(τ ) = Û(t1) +
[Û(t2)− c(t2,m2(τ ))]− Û(t1)

t2 − t1
· (µ− t1)

= Û(t1) +
c(t1,m2(τ ))− c(t2,m2(τ ))

t2 − t1
· (µ− t1)

and

∂E(τ )

∂t2
=

(µ− t1)

(t2 − t1)2

[(∂c(t1,m2(τ ))

∂m

∂m

∂t2
− ∂c(t2,m2(τ ))

∂t2
− ∂c(t2,m2(τ ))

∂m

∂m

∂t2

)
(t2 − t1)

− c(t1,m2(τ )) + c(t2,m2(τ ))
]

=
(µ− t1)

(t2 − t1)2

[
(
∂c(t1,m2(τ ))

∂m
− ∂c(t2,m2(τ ))

∂m
)
∂m

∂t2
(t2 − t1)

+ c(t2,m2(τ ))− ∂c(t2,m2(τ ))

∂t2
(t2 − t1)− c(t1,m2(τ ))

]
.

Since ∂2c
∂m∂t < 0, ∂c(t1,m2(τ ))

∂m > ∂c(t2,m2(τ ))
∂m . Also, since c is concave in t, then

c(t2,m2(τ ))− ∂c(t2,m2(τ ))

∂t2
(t2 − t1) > c(t1,m2(τ )).

By the implicit function theorem, from equation (A.2), we have

∂Û(t2)

∂t2
− ∂c(t1,m2(τ ))

∂m

∂m

∂t2
= 0,
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so
∂m

∂t2
=

Û ′(t2)
∂c(t1,m2(τ ))

∂m

> 0.

Therefore, ∂E(τ )
∂t2

> 0, which means the expected payoff from τ increases with t2, for any given t1.

(b) When the condition that Û is convex in t is satisfied, the proof is as follows.
Given any t1 < µ,
if Û(t1) ≥ Û(t2)− c(t1,mc(t2)) for t2 in any convex set (e.g., t2 ∈ [t, t̄]), the two types separate with
their respective costless messages and thus, E(τ ) increases with t2;
if Û(t1) ≤ Û(t2)− c(t1,mc(t2)) for t2 in any convex set, by the analysis in (a) above, E(τ ) increases
with t2.
Therefore, whether t2 can separate with her cost-minimizing message, given t1, the experiment τ
with higher t2 ∈ (µ, tH ] has higher expected payoff.

3. If Û(µ)− c(t1,m) < Û(t1) < Û(tH)− c(t1,m), the proof is as follows.
If τ induces a partial-pooling experiment, aR(m) must satisfy

Û(t1) = U(aR(m))− c(t1,m).

Then, there exists t̃ ∈ (µ, tH) s.t. αR(t̃) = aR(m).

(a) When t2 ≤ t̃, Û(t1) ≥ Û(t̃)− c(t1,m). τ induces a separating equilibrium. Based on the analysis in
case 2, E(τ ) increases with t2 and when t2 = t̃,

E(τ ) = Û(t1) +
[Û(t̃)− c(t̃, m)]− Û(t1)

t̃− t1
(µ− t1).

(b) When t2 > t̃, Û(t1) < Û(t2)− c(t1,m). τ induces a partial-pooling equilibrium in which t1 sends m
with probability q. Given t1,

E(τ ) = Û(t1) + (µ− t1) · 1

t̃− t1
·
[
Û(t̃)− τ1qc(t1,m) + τ2c(t2,m)

τ1q + τ2
− Û(t1)

]
,

where τ1qt1+τ2t2
τ1q+τ2

= t̃ for any τ . The expected cost from pooling τ1qc(t1,m)+τ2c(t2,m)
τ1q+τ2

decreases with t2
and is lower than c(t̃, m).

Thus, E(τ ) increases with t2.

Proof of Proposition 4

Proof. c is concave in t (HD condition) indicates a pooling experiment has two results if it is optimal. Then, the
optimal experiment has two results or one result. In this proof, we first consider the optimal experiment that
consists of two results, and then, compare that with the uninformative experiment (µ; 1).

Consider any experiment containing two results, denoted by τ = (t1, t2; τ1, τ2). According to the condition
in Proposition 4,

Û(t1) + c(t1,m) > Û(µ) + c(µ,m) > Û(µ), ∀ t1 < µ.

Therefore, there is no experiment with two results that induces a total-pooling equilibrium. We then have the
following three cases.
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1. If τ induces a separating equilibrium in which the two types sends their respective costless message,
according to the second part of the HD condition, Û is convex. Thus, given any t1, E(τ ) decreases with
t1.

2. If τ induces a separating equilibrium and

Û(t1) = Û(t2)− c(t1,m2(τ )), (A.3)

the expected payoff of τ is

E(τ ) = Û(t1) + [Û(t2)− c(t2,m2(τ ))− Û(t1)] · µ− t1
t2 − t1

= Û(t1) + [c(t1,m2(τ ))− c(t2,m2(τ ))] · µ− t1
t2 − t1

.

Then,

∂E(τ )

∂t1
=Û ′(t1) + [ct(t1,m2(τ )) + cm(t1,m2(τ ))

∂m2(τ )

∂t1
− cm(t2,m2(τ ))

∂m2(τ )

∂t1
]
µ− t1
t2 − t1

+
−t2 + t1 + µ− t1

(t2 − t1)2
[c(t1,m2(τ ))− c(t2,m2(τ ))].

By equation (A.3),

Û ′(t1) = −ct(t1,m2(τ ))− cm(t1,m2(τ ))
∂m2(τ )

∂t1
,

implying
∂m2(τ )

∂t1
= − Û

′(t1) + ct(t1,m2(τ ))

cm(t1,m2(τ ))
.

Since m2(τ ) ≥ mc(t2) and m2(τ ) ≥ m1(τ ) = mc(t1), cm(t1,m2(τ )) > cm(t2,m2(τ )) ≥ 0. Hence,
∂m2(τ )
∂t1

> 0. Substitute the value of Û ′(t1), and then,

∂E(τ )

∂t1
=− t2 − µ

t2 − t1
[ct(t1,m2(τ )) + cm(t1,m2(τ ))

∂m2(τ )

∂t1
]− cm(t2,m2(τ ))

∂m2(τ )

∂t1

µ− t1
t2 − t1

− t2 − µ
(t2 − t1)2

[c(t1,m2(τ ))− c(t2,m2(τ ))]

=− t2 − µ
(t2 − t1)2

[c(t1,m2(τ )) + ct(t1,m2(τ )) · (t2 − t1)− c(t2,m2(τ ))]

− t2 − µ
t2 − t1

cm(t1,m2(τ ))
∂m2(τ )

∂t1
− µ− t1
t2 − t1

cm(t2,m2(τ ))
∂m2(τ )

∂t1
.

(A.4)

Since c(t,m) is concave in t,

c(t1,m2(τ )) + ct(t1,m2(τ )) · (t2 − t1)− c(t2,m2(τ )) > 0.

Thus, ∂E(τ )
∂t1

< 0.

3. If τ induces a partial-pooling equilibrium, Û(t1) = U(aR(m))− c(t1,m). Then,

E(τ ) =Û(t1) + [U(aR(m))− c(t2,m)− Û(t1)]
µ− t1
t2 − t1

=Û(t1) + [c(t1,m)− c(t2,m)]
µ− t1
t2 − t1
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and

∂E(τ )

∂t1
=Û ′(t1) + ct(t1,m) · µ− t1

t2 − t1
+
−t2 + t1 + µ− t1

(t2 − t1)2
[c(t1,m)− c(t2,m)]

=Û ′(t1) + ct(t1,m)− t2 − µ
(t2 − t1)2

[c(t1,m)− c(t2,m) + ct(t1,m) · (t2 − t1)].

(A.5)

Since c(t,m) is concave in t, c(t1,m) + ct(t1,m) · (t2 − t1)− c(t2,m) > 0. Thus, ∂E(τ )
∂t1

< 0.

Therefore, for all experiments with two results τ = (t1, t2; τ1, τ2), given any t2, the sender’s expected payoff
from τ , E(τ ), decreases with t1 so that E(τ ) is maximized when t1 = tL. By Lemma 3, given any t1, E(τ )

increases with t2 so that E(τ ) is maximized when t2 = tH .

Moreover, the sender’s expected payoff from the uninformative experiment (µ; 1) is Û(µ). The uninformative
experiment can be considered as (t1 = µ, tH ; 1, 0). Since given t2, E(τ ) is decreasing in t1 ∈ [0, µ], no matter if
τ induces a separating equilibrium or partial-pooling equilibrium, then the uninformative experiment cannot be
optimal. In conclusion, the sender must choose the fully informative experiment (tL, tH ; 1− µ, µ).

Proof of Proposition 5

Proof. The first statement is obvious. To prove the second statement, we show when αR(µ) =
¯
a, the fully

informative experiment τ̄ = (tL, tH ; 1−µ, µ) is strictly better than the uninformative experiment τ0. By Lemma
A.1, αR is weakly increasing, so Û(tL) = Û(µ) = U(

¯
a). (Based on our model setting in Section 2, Û(tH) > U(

¯
a).)

Let us consider the equilibrium induced by τ̄ as follows.

1. When Û(tL) ≥ Û(tH)− c(tL,m), τ̄ induces a separating equilibrium.

• If Û(tL) ≥ Û(tH)− c(tL,mc(tH)), tL sends mc(tL) and tH sends mc(tH). Thus, E(τ̄ ) > E(τ0).

• Otherwise, Û(tL) = Û(tH) − c(tL,m2(τ̄ )). By Lemma A.3, m2(τ̄ ) > mc(tH). Since tH obtains a
payoff

Û(tH)− c(tH ,m2(τ̄ )) > Û(tH)− c(tL,m2(τ̄ )) = Û(tL),

we have E(τ̄ ) > E(τ0).

2. When Û(tL) < Û(tH)− c(tL,m). Since Û(tL) > Û(µ)− c(tL,m), τ̄ induces a partial-pooling equilibrium.
Type tL sends m with probability q, where q satisfies

Û(φ1(τ̄ , q))− c(tL,m) = Û(tL).

Then, type tH obtains a payoff

Û(φ1(τ̄ , q))− c(tH ,m) > Û(φ1(τ̄ , q))− c(tL,m) = Û(tL),

so E(τ̄ ) > E(τ0).

Proof of Corollary 4

Proof. By the first condition, the optimal experiment is the uninformative experiment or a separating experiment
that consists of two results.
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For any experiment with two results τ = (t1, t2; τ1, τ2), if it induces a separating equilibrium, by equation
(A.4) and the conditions in Corollary 4, ∂E(τ )

∂t1
> 0. If τ induces a partial-pooling equilibrium, by equation (A.5)

and the conditions in Corollary 4, ∂E(τ )
∂t1

> 0. If τ induces a total-pooling equilibrium, E(τ ) increases with t1
because c is strictly convex in t. Then, given any t2, E(τ ) always increases with t1. Since lim

t1→µ
E(τ ) ≤ Û(µ),

the sender chooses the uninformative experiment.

Proof of Corollary 7

Proof. Since c = K(m− t)2 is convex in t, by Proposition 1, the optimal experiment is separating, which either
is uninformative or contains two results. Based on this, we first consider the sender’s expected payoff from any
separating experiment with two results, and then, figure out under which condition the sender chooses τ0. Lastly,
we derive how the sender’s equilibrium payoff is affected by the cost intensity K.

First, let us consider any separating experiment with two results, denoted by τ = (t1, t2; τ1, τ2). If
¯
a ≤ t1 < µ,

we have E(τ ) ≤ E(τ0) because the linear utility function implies τ0 is optimal. If t1 <
¯
a, given any t2, t1 = tL

is optimal. We then consider the optimal value of t2.

1. When Û(tL) ≥ Û(tH)−c(tL,m), that is, K ≥ 1−
¯
a, any τ = (tL, t2; τ1, τ2) induces a separating equilibrium.

The sender chooses the fully informative experiment because it lets the sender obtain the highest expected
utility without incurring any reporting cost.

2. When Û(tL) ≤ Û(µ) − c(tL,m), that is, K ≤ µ −
¯
a, any τ = (tL, t2; τ1, τ2) cannot induce a separating

equilibrium. Hence, the sender chooses τ0.

3. When Û(µ) − c(tL,m) < Û(tL) < Û(tH) − c(tL,m), that is, µ −
¯
a < K < 1 −

¯
a. Since τ = (tL, t2; τ1, τ2)

induces a separating equilibrium,

Û(tL) ≥ Û(t2)− c(tL,m),

t2 ≤ K +
¯
a.

If Û(tL) ≥ Û(t2)− c(tL,mc(t2)), E(τ ) increases with t2. If

Û(tL) = Û(t2)− c(tL,m2(τ )),

¯
a = t2 −K(m2(τ )− tL)2,

we have

m2(τ ) =

√
t2 −

¯
a

K
.

Then,

E(τ ) = Û(tL) + [Û(t2)− c(t2,m2(τ ))− Û(tL)]
µ− tL
t2 − tL

=
¯
a+ [t2 −K(

√
t2 −

¯
a

K
− t2)2 −

¯
a]
µ

t2

=
¯
a+ (−Kt2 + 2

√
K
√
t2 −

¯
a)µ

and
∂E(τ )

∂t2
=
(
−K +

√
K

t2 −
¯
a

)
µ.
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Since t2 ≤ K +
¯
a, we have ∂E(τ )

∂t2
> 0. Therefore, t2 = K +

¯
a.

Second, we consider when τ0 is optimal. Based on the analysis above, when K ≥ 1 −
¯
a, the fully informative

experiment is optimal. When K ≤ µ −
¯
a, τ0 is optimal. When µ −

¯
a < K < 1 −

¯
a, the optimal separating

experiment that consists of two results is τ̃ = (tL, t̃2; τ1, τ2), where t̃2 = K +
¯
a < 1. Since

Û(t̃2)− c(tL,mc(t̃2)) = K +
¯
a−K(K +

¯
a)2 >

¯
a = Û(tL),

t̃2 separates with m2(τ̃ ) = 1. Then,

E(τ̃ ) = Û(tL) + [Û(t̃2)− c(t̃2,m2(τ̃ ))− Û(tL)]
µ− tL
t̃2 − tL

=
¯
a+ [K +

¯
a−K(1−K −

¯
a)2 −

¯
a]

µ

K +
¯
a

= −µK2 + µ(2− a)K +
¯
a.

If τ0 is optimal, we have E(τ̃ ) ≤ Û(µ) = µ, implying K ≤ 1 − 1
2¯
a −

√
1
4¯
a2 −

¯
a+ ¯

a
µ . Therefore, τ̃ is optimal

if 1 − 1
2¯
a −

√
1
4¯
a2 −

¯
a+ ¯

a
µ < K ≤ 1 −

¯
a, and τ0 is optimal if K ≤ 1 − 1

2¯
a −

√
1
4¯
a2 −

¯
a+ ¯

a
µ because µ −

¯
a <

1− 1
2¯
a−

√
1
4¯
a2 −

¯
a+ ¯

a
µ for any µ ∈ (

¯
a, 1).

Lastly, we prove the sender’s equilibrium payoff weakly increases with K. As K increases, the sender’s equilib-
rium payoff changes from µ to E(τ̃ ) and then

¯
a + (1 −

¯
a)µ, the expected payoff from the fully informative

experiment. When K ∈ (1− 1
2¯
a−

√
1
4¯
a2 −

¯
a+ ¯

a
µ , 1− ¯

a), the sender’s equilibrium payoff E(τ̃ ) increases with K

because ∂E(τ̃ )
∂K = µ(2−

¯
a− 2K) > 0. Therefore, the sender’s equilibrium payoff weakly increases with K.

Appendix B. Existence of the Optimal Experiment

Built on Lemma 1, we have the following proposition.

Proposition B.1. The optimal experiment exists.

The proof is built on analysis and definitions (notations) in Section 3. Besides, we adopt the following notations.

• The set of the experiments that consist of n results is denoted by
Xn =

{
(t1, . . . , tn; τ1, . . . , τn) ∈ [0, 1]n × (0, 1]n

∣∣ t1 < · · · < tn,
∑n
i=1 tiτi = µ,

∑n
i=1 τi = 1

}
.

• The sender’s expected payoff of experiments τ ∈ Xn is a function En(τ ) : Xn → R.

Next, we prove the existence through three steps:

Step 1: For any finite n ∈ N, the sender’s expected payoff En(τ ) is continuous in experiments τ ∈ Xn.

Step 2: For any finite N ∈ N, the sender’s expected payoff is upper semi-continuous in experiments τ ∈⋃
n≤N

Xn.

Step 3: The optimal experiment needs a finite number of results.

Step 1. Prove that given any finite n, En(τ ) is continuous in experiments τ ∈ Xn.
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The proof is via the following claims.

Claim 1: mc(t) ≡ arg minm∈[0,m] c(t,m) is a continuous function of t ∈ [0, 1].

Proof. Suppose mc(·) is discontinuous at t̂ ∈ [0, 1]. If mc(·) is not right continuous at t̂, there exists ε > 0 such
that for all δ > 0, ∃ t(δ) s.t. 0 < t(δ) − t̂ < δ and |mc(t(δ)) − mc(t̂)| ≥ ε. Since mc(·) weakly increases in t,
mc(t(δ)) ≥ mc(t̂) + ε > mc(t̂). Because c is strictly quasi-convex in m, we have

c(t(δ),mc(t̂) + ε) < c(t(δ),mc(t̂)). (A.6)

Let (δj)j∈N be a sequence such that δj > 0 and lim
j→+∞

δj = 0. Then, lim
j→+∞

t(δj) = t̂ and

lim
j→+∞

c(t(δj),mc(t̂) + ε) = c(t̂, mc(t̂) + ε), lim
j→+∞

c(t(δj),mc(t̂)) = c(t̂, mc(t̂)).

Because c(t̂, mc(t̂) + ε) > c(t̂, mc(t̂)), then as j → +∞, c(t(δj),mc(t̂) + ε) > c(t(δj),mc(t̂)), which violates
inequality (A.6). Therefore, mc(·) is right continuous at any t ∈ [0, 1). Similarly, we can also prove it is left
continuous at any t ∈ (0, 1].

Claim 2: Denote τ ′ = (t′1, . . . , t
′
n; τ ′1, . . . , τ

′
n) ∈ Xn. There exists ε > 0, such that for any experiment τ ′ that

satisfies ∀ 1 ≤ i ≤ n, |t′i− ti| < ε and |τ ′i − τi| < ε, we have the conclusion that mi(τ
′) exists if for experiment τ ,

mi(τ ) < m exists. That is, for experiment τ ∈ Xn, if the separating message of ti exists, then for an “arbitrarily
close” experiment τ ′ ∈ Xn, the separating message for t′i, mi(τ

′), exists. (The separating message is defined in
Section 3.)

Proof. Suppose for experiment τ , mi(τ ) < m exists. For i = 1, m1(τ ′) = mc(t
′
1) must exist. For i = 2, we have

Û(t1)− c(t1,mc(t1)) ≥ Û(t2)− c(t1,m2(τ )) > Û(t2)− c(t1,m),

so as τ ′ → τ (i.e., ∀ 1 ≤ i ≤ n, t′i → ti and τ ′i → τi),

Û(t′1)− c(t′1,mc(t
′
1)) > Û(t′2)− c(t′1,m).

Also
Û(t′1)− c(t′1,mc(t

′
1)) < Û(t′2)− c(t′1,mc(t

′
1)),

so ∃ m̂2 ∈ (mc(t
′
1),m) s.t. Û(t′1) − c(t′1,mc(t

′
1)) = Û(t′2) − c(t′1, m̂2). Since c(t′1,m) strictly increases in m ∈

(mc(t
′
1),m),

Û(t′1)− c(t′1,mc(t
′
1)) ≥ Û(t′2)− c(t′1,m),

∀ m ∈ [m̂2,m]. Therefore, m2(τ ′) = arg min
m∈[m̂2,m]

c(t′2,m) exists. Subsequently and similarly, we can show ∀ i,

mi(τ
′) exists if mi(τ ) < m exists.

Claim 3: For any τ ∈ Xn, ∀ 1 ≤ j ≤ n, if mj(τ ) < m exists, mj(·) is continuous at τ ∈ Xn.

Proof. Let experiment τ = (t1, . . . , tn; τ1, . . . , τn) induce separating messages: m1(τ ), . . . ,mk(τ ), k ≤ n. Denote
τ ′ = (t′1, . . . , t

′
n; τ ′1, . . . , τ

′
n), where ∀ 1 ≤ i ≤ n, t′i → ti and τ ′i → τi. That is, τ ′ ∈ Xn and τ ′ → τ . Suppose
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mk(τ ) < m, and then, ∀ j ≤ k, mj(τ
′) exists. Next we prove lim

τ ′→τ
mj(τ

′) = mj(τ ). Because mc(·) is a
continuous function,

lim
τ ′→τ

m1(τ ′) = lim
τ ′→τ

mc(t
′
1) = mc(t1) = m1(τ ).

The analysis for m2(τ ) is as follows.

1. If Û(t1)− c(t1,mc(t1)) > Û(t2)− c(t1,mc(t2)), then m2(τ ) = mc(t2).

Since Û , c, and mc are all continuous functions,

Û(t′1)− c(t′1,mc(t
′
1)) > Û(t′2)− c(t′1,mc(t

′
2)).

Therefore, m2(τ ′) = mc(t
′
2) and lim

τ ′→τ
m2(τ ′) = lim

τ ′→τ
mc(t

′
2) = mc(t2) = m2(τ ).

2. If Û(t1)− c(t1,mc(t1)) = Û(t2)− c(t1,mc(t2)), we also have m2(τ ) = mc(t2).

If Û(t′1)−c(t′1,mc(t
′
1)) ≥ Û(t′2)−c(t′1,mc(t

′
2)), we have the same argument as above. If Û(t′1)−c(t′1,mc(t

′
1)) <

Û(t′2)− c(t′1,mc(t
′
2)), we have Û(t′1)− c(t′1,mc(t

′
1)) = Û(t′2)− c(t′1,m2(τ ′)). Then,

lim
τ ′→τ

[
Û(t′2)− c(t′1,m2(τ ′))

]
= lim
τ ′→τ

[
Û(t′1)− c(t′1,mc(t

′
1))
]

=Û(t1)− c(t1,mc(t1))

=Û(t2)− c(t1,mc(t2)),

implies lim
τ ′→τ

c(t′1,m2(τ ′)) = c(t1,mc(t2)).21

Next we prove lim
τ ′→τ

m2(τ ′) = mc(t2). Suppose not. Then, there exists ε > 0 such that for all δ > 0,

∃ τ (δ) = (t1(δ), . . . , tn(δ); τ1(δ), . . . , τn(δ)) ∈ Xn, s.t. ∀ i, |ti(δ)− ti| < δ, |τi(δ)− τi| < δ and |m2(τ (δ))−
mc(t2)| ≥ ε. Then, m2(τ (δ)) ≤ mc(t2)− ε or m2(τ (δ)) ≥ mc(t2) + ε. Since lim

δ→0
mc(t2(δ)) = mc(t2), then

as δ → 0, m2(τ (δ)) ≥ mc(t2(δ)) > mc(t2)− ε. Thus, we have m2(τ (δ)) ≥ mc(t2) + ε. Because

lim
δ→0

[
c(t1(δ),m2(τ (δ)))− c(t1(δ),mc(t2) + ε)

]
= c(t1,mc(t2))− c(t1,mc(t2) + ε) < 0,

then as δ → 0, c(t1(δ),m2(τ (δ))) < c(t1(δ),mc(t2) + ε), which contradicts that c is strictly quasi-convex
in m.

3. If Û(t1)− c(t1,mc(t1)) < Û(t2)− c(t1,mc(t2)), then m2(τ ) > mc(t2) and

Û(t1)− c(t1,mc(t1)) = Û(t2)− c(t1,m2(τ )).

Then,

Û(t′1)− c(t′1,mc(t
′
1)) < Û(t′2)− c(t′1,mc(t

′
2)),

Û(t′1)− c(t′1,mc(t
′
1)) = Û(t′2)− c(t′1,m2(τ ′)),

implying lim
τ ′→τ

c(t′1,m2(τ ′)) = c(t1,m2(τ )). Using the proof method in the second scenario, we can prove

lim
τ ′→τ

m2(τ ′) = m2(τ ). Subsequently and similarly, we can prove ∀ 1 ≤ j ≤ k, lim
τ ′→τ

mj(τ
′) = mj(τ ), so

mj(·) is continuous at experiment τ ∈ Xn.

21More precisely, the limit as τ ′ → τ is under the condition that τ ′ satisfies Û(t′1)−c(t′1,mc(t
′
1)) < Û(t′2)−c(t′1,mc(t

′
2)).
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Claim 4: Given any finite n, En(τ ) is continuous in experiments τ ∈ Xn.

Proof. In this proof, we prove the continuity of En at τ if τ induces a partial-pooling equilibrium in which the
threshold type takes a mixed strategy. Based on that, if τ induces other kinds of D1 equilibria, the proof is
similar and thus omitted.

Suppose experiment τ = (t1, . . . , tn; τ1, . . . , τn) induces a D1 equilibrium in which type ti ≤ tp−1 sendsmi(τ ),
type ti ≥ tp+1 sends m, and type tp sends m with probability q and mp(τ ) < m with probability 1 − q, where
q ∈ (0, 1). Then, the following IC conditions are satisfied:

Û(ti)− c(ti,mi(τ )) > Û(φi+1(τ , 1))− c(ti,m), i < p,

Û(tp)− c(tp,mp(τ )) < Û(φp+1(τ , 1))− c(tp,m),

Û(tp)− c(tp,mp(τ )) > Û(φp(τ , 1))− c(tp,m),

Û(tp)− c(tp,mp(τ )) = Û(φp(τ , q))− c(tp,m).

The sender’s expected utility from experiment τ is

En(τ ) =

p−1∑
i=1

τi
[
Û(ti)− c(ti,mi(τ ))

]
+

n∑
i=p

τi
[
Û(φp(τ , q))− c(ti,m)

]
.

Denote τ ′ = (t′1, . . . , t
′
n; τ ′1, . . . , τ

′
n), where ∀ 1 ≤ i ≤ n, t′i → ti and τ ′i → τi. That is, τ ′ ∈ Xn and τ ′ → τ .

According to Claim 2, we have mi(τ
′), i ≤ p, exists because mi(τ ) < m, i ≤ p, exists. Since Û , c, mi(·), φi(·, 1)

are all continuous in τ ∈ Xn, we have

Û(t′i)− c(t′i,mi(τ
′)) > Û(φp(τ

′, 1))− c(t′i,m), i = 1, . . . , j,

Û(t′p)− c(t′p,mp(τ
′)) < Û(φp+1(τ ′, 1))− c(t′p,m),

Û(t′p)− c(t′p,mp(τ
′)) > Û(φp(τ

′, 1))− c(t′p,m).

Then, ∃ q′ ∈ (0, 1) s.t.
Û(t′p)− c(t′p,mp(τ

′)) = Û(φp(τ
′, q′))− c(t′p,m).

Thus,

lim
τ ′→τ

[
Û(φp(τ

′, q′))− c(t′p,m)
]

= lim
τ ′→τ

[
Û(t′p)− c(t′p,mp(τ

′))
]

=Û(tp)− c(tp,mp(τ ))

=Û(φp(τ , q))− c(tp,m),

implying lim
τ ′→τ

Û(φp(τ
′, q′)) = Û(φp(τ , q)).

Next, we prove q′ → q, as τ ′ → τ . Suppose not. Then, there exists ε > 0 such that for all δ > 0,
∃ τ (δ) = (t1(δ), . . . , tn(δ); τ1(δ), . . . , τn(δ)) ∈ Xn, s.t. ∀ 1 ≤ i ≤ n, |ti(δ)− ti| < δ, |τi(δ)− τi| < δ, |q(δ)− q| ≥ ε

and lim
δ→0

U
(
αR(φp(τ (δ), q(δ)))

)
= Û(φp(τ , q)). Since φ(τ , q) is continuous and strictly decreases in q, Û(φp(τ , q))

is continuous and strictly decreases in q. Thus,

lim
δ→0

[
Û(φp(τ (δ), q(δ)))− Û(φp(τ (δ), q + ε))

]
= Û(φp(τ , q))− Û(φp(τ , q + ε)) > 0,

implying when δ → 0, Û(φp(τ (δ), q(δ))) > Û(φp(τ (δ), q + ε)). Similarly, when δ → 0, Û(φp(τ (δ), q(δ))) <

45



Û(φp(τ (δ), q − ε)). Then, q − ε < q(δ) < q + ε, which leads to a contradiction. Thus, q′ → q, as τ ′ → τ .

Therefore, the sender’s expected utility from experiment τ ′

En(τ ′) =

p−1∑
i=1

τ ′i
[
Û(t′i)− c(t′i,mi(τ

′))
]

+

n∑
i=p

τ ′i
[
Û(φp(τ

′, q′))− c(t′i,m)
]

approaches En(τ ), i.e., lim
τ ′→τ

En(τ ′) = En(τ ). Hence, En(τ ) is continuous at τ ∈ Xn. Similarly, the continuity
can also be proved if τ induces other kinds of D1 equilibria.

Step 2. We prove if the sender chooses from the experiments that contain n ≤ N results, the optimal experiment
exists.

Proof. Though we have proved En(τ ) is continuous in τ ∈ Xn, we cannot derive the existence of the optimal
experiment directly because Xn is not a closed set, for any n ≤ N . To construct a closed set for experiments, we
define the set

QN ≡
{

(t1, . . . , tN ; τ1, . . . , τN ) ∈ [0, 1]N × [0, 1]N
∣∣ t1 ≤ · · · ≤ tN ;

N∑
i=1

tiτi = µ;

N∑
i=1

τi = 1
}
.

QN is closed and XN ⊂ QN . We still denote each element of QN as τ . τ ∈ XN represents an experiment with
N results, while τ ∈ QN \XN can represent an experiment with less than N results. Then, we construct a new
payoff function F (·) : QN → R as follows.

• If τ ∈ XN , F (τ ) = EN (τ ).

• If τ ∈ QN \XN , F (τ ) is the expected payoff from experiment β(τ ), where β(τ ) is derived after deleting
tj if τj = 0, and after combining tj and tj+1 if tj = tj+1.

For example, if t1 < · · · < tN and ∀ i, τi > 0 except τj = 0, then τ can be considered as experiment β(τ ) =

(t1, . . . , tj−1, tj+1, . . . , tN ; τ1, . . . , τj−1, τj+1, . . . , τN ). If t1 < · · · < tj = tj+1 < · · · < tN and ∀ i, τi > 0,
then τ can be considered as experiment β(τ ) = (t1, . . . , tj , tj+2, . . . , tN ; τ1, . . . , τj−1, τj+τj+1, τj+2, . . . , τN ).

Any τ ∈ QN represents an experiment and any experiment in
⋃N
n=1Xn can be represented by a τ ∈ QN . Then,

the existence of the optimal experiment in
⋃N
n=1Xn is equivalent to the existence of the maximum of F (τ ),

τ ∈ QN :
max

n=1,...,N

[
max
τ∈Xn

En(τ )
]
⇔ max

τ∈QN

F (τ )

By Claim 4, EN (·) is continuous in τ ∈ XN . Next, we prove F (·) is upper semi-continuous in τ ∈ QN .

Step 1.1. Prove: F (·) is upper semi-continuous at τ ∈ QN \ XN , where τ = (t1, . . . , tN ; τ1, . . . , τN ) satisfies
t1 < · · · < tN , τj = 0 and ∀ i 6= j, τi > 0.

In this proof, though mj(τ ) is undefined, we still let mj+1(τ ) denote the separating message of type tj+1.
Denote τ ′ = (t′1, . . . , t

′
N ; τ ′1, . . . , τ

′
N ), where ∀ 1 ≤ i ≤ N , t′i → ti and τ ′i → τi. That is, τ ′ → τ , τ ′ ∈ QN . If

τ ′j = 0, the proof is obvious based on Claim 4. Next, we show the proof for τ ′j > 0.

Suppose τ induces a pure strategy partial-pooling equilibrium, and the proofs for other kinds of D1 equilibria
are similar and omitted. Assume all the types smaller than tp separates and other types pool. As τ ′j → 0, the
limit of the sender’s expected payoff from τ ′ depends on the payoff of t′1, . . . , t′j−1, t

′
j+1, . . . , t

′
N . By the logic in
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the proof of Claim 4, when tj > tp−1, experiment τ ′ also induces t′1, . . . , t′p−1 to separate and t′p, . . . , t′N to pool.
t′p−1 may pool with probability ε→ 0 and t′p may separate with probability ε→ 0. Thus, lim

τ ′→τ
fτ ′(t′i) = fτ (ti),

i 6= j, that implies lim
τ ′→τ

F (τ ′) = F (τ ).

Next, we prove lim
τ ′→τ

F (τ ′) < F (τ ) if tj < tp−1. For τ , it induces a D1 equilibrium in which type ti < tp,

i 6= j, sends mi(τ ) < m and ti ≥ tp sends m. Though tj is not a type in τ (because τj = 0), to compare with
experiment τ ′, we can consider the “separating message” for tj , denoted by m̃j , that is the least costly message
for tj to separate from any ti, i < j. Because τ induces t1, . . . , tj−1, tj+1 to separate,

Û(tj−1)− c(tj−1,mj−1(τ )) ≥ Û(tj+1)− c(tj−1,mj+1(τ ))

> Û(tj)− c(tj−1,m).

Thus, m̃j exists. Since τ ′ → τ , we have Û(t′j−1)− c(t′j−1,mj−1(τ ′)) > Û(t′j)− c(t′j−1,m). Then, mj(τ
′) exists

and lim
τ ′→τ

mj(τ
′) = m̃j .

We have the following analysis of tj .

• If Û(tj)−c(tj , m̃j) < Û(φj+1(τ , 1))−c(tj ,m), we have Û(t′j)−c(t′j ,mj(τ
′)) < Û(φj(τ

′, 1))−c(t′j ,m) because
lim
τ ′→τ

φj+1(τ ′, 1) = lim
τ ′→τ

φj(τ
′, 1). Thus, in the D1 equilibrium induced by τ ′, t′1, . . . , t′j−1 separate, and

t′j , . . . , t
′
N pool. Then, for i < j, lim

τ ′→τ
fτ ′(t′i) = fτ (ti). For j < i < p, since

Û(ti)− c(ti,mi(τ )) ≥ Û(φi+1(τ , 1))− c(ti,m) > Û(φj+1(τ , 1))− c(ti,m),

we have lim
τ ′→τ

fτ ′(t′i) < fτ (ti). For i ≥ p,

fτ (ti) = Û(φp(τ , 1))− c(ti,m) > Û(φj+1(τ , 1))− c(ti,m) = lim
τ ′→τ

fτ ′(t′i).

Therefore, lim
τ ′→τ

F (τ ′) < F (τ ).

• If Û(tj) − c(tj , m̃j) ≥ Û(φj+1(τ , 1)) − c(tj ,m). We calculate the “separating message” based on m̃j for
type tj+1 as

m̃j+1 = arg min
m∈[0,m]

c(tj+1,m)

s.t. Û(tj)− c(tj , m̃j) ≥ Û(tj+1)− c(tj ,m),m ≥ m̃j .

m̃j+1 exists and is the least costly message for tj+1 to separate from t1, . . . , tj . Since

Û(tj−1)− c(tj−1,mj−1(τ )) ≥ Û(tj)− c(tj−1, m̃j)

> Û(tj+1)− c(tj−1, m̃j+1),

then m̃j+1 > mj+1(τ ) or m̃j+1 = mj+1(τ ) = mc(tj+1). We then repeat the above analysis of tj to
have the analysis of tj+1. Recursively, we have the analysis of tj+2, . . . , tp−1. Similarly, we can prove
lim
τ ′→τ

F (τ ′) < F (τ ) until Û(tp−1)− c(tp−1, m̃p−1) ≥ Û(φp(τ , 1))− c(tp−1,m), in which case, m̃p ≥ mp(τ )

exists. Since Û(tp)−c(tp, m̃p) ≤ Û(tp)−c(tp,mp(τ )) ≤ Û(φp(τ , 1))−c(tp,m), we have lim
τ ′→τ

F (τ ′) ≤ F (τ ).

Step 1.2. Prove: F (·) is upper semi-continuous at τ ∈ QN \ XN , where τ = (t1, . . . , tN ; τ1, . . . , τN ) satisfies
t1 < · · · < tj = tj+1 < · · · < tN , and ∀ i, τi > 0.
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τ can be considered as the experiment (t1, . . . , tj , tj+2, . . . , tN ; τ1, . . . , τj−1, τj + τj+1, τj+2, . . . , τN ). Denote
τ ′ = (t′1, . . . , t

′
N ; τ ′1, . . . , τ

′
N ), where ∀ 1 ≤ i ≤ N , t′i → ti and τ ′i → τi. That is, τ ′ → τ , τ ′ ∈ QN . When t′j = t′j+1,

by Claim 4, the proof is obvious. When t′j < t′j+1, lim
τ ′→τ

mj+1(τ ′) = lim
τ ′→τ

mj(τ
′) = mj(τ ) if mj(τ ) < m exists.

Therefore, according to the proof of Claim 4, we have lim
τ ′→τ

F (τ ′) = F (τ ).

By analogy, F (·) is upper semi-continuous at any τ ∈ QN \ XN . Thus, F (·) is upper semi-continuous in
τ ∈ QN . Because QN is closed and bounded, the maximum of F (·) for τ ∈ QN exists.

Step 3: The optimal experiment exists.

Proof. By the proof of Proposition 1, for any experiment with n ≥ 4 results, we can find another experiment
with fewer than or equal to three results, that induces weakly higher expected payoff for the sender ex ante.
Then, the sender’s optimal experiment choice from the experiments that contain n ≤ 3 results is optimal among
all experiments. Therefore, based on Step 1, the optimal experiment exists.

Lemma B.1. The best separating experiment τ s exists.

Proof. According to Proposition 1, the best separating experiment needs at most two results, thus, based on
the proof of Proposition B.1, we only need to prove the existence of the maximum of F (τ ), where τ induces a
separating equilibrium and

τ ∈ Q2 =
{

(t1, t2; τ1, τ2) ∈ [0, 1]2 × [0, 1]2
∣∣ t1 ≤ t2, t1τ1 + t2τ2 = µ, τ1 + τ2 = 1

}
.

τ ∈ Q2 \ X2 represents the uninformative experiment and induces a separating equilibrium. τ ∈ X2 is an
experiment with two results: t1 < t2, and induces a separating equilibrium if and only if

Û(t1)− c(t1,mc(t1)) ≥ Û(t2)− c(t1,m).

By the implicit function theorem, there exists a unique continuous function of t1, l(·) : [0, µ] → [0,+∞), that
satisfies

Û(t1)− c(t1,mc(t1)) = Û(l(t1))− c(t1,m).

Then, if t1 < t2 ≤ l(t1), τ ∈ X2 is a separating experiment with two results. Thus, the set of the separating
experiments with at most two results can be represented as

τ ∈ Qs2 =
{

(t1, t2; τ1, τ2) ∈ [0, 1]2 × [0, 1]2
∣∣ t1 ≤ t2 ≤ l(t1), t1τ1 + t2τ2 = µ, τ1 + τ2 = 1

}
.

From the proof of Proposition B.1, F (·) is upper semi-continuous in τ ∈ Q2. Qs2 is a closed and bounded
subset of Q2, so the best separating experiment exists.
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