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Abstract

We theoretically and experimentally study centralized college admissions in which colleges
evaluate students under a ‘translucent’ admission system and students can learn each col-
lege’s suitability through costly information acquisition. In centralized matching via Gale and
Shapley’s deferred acceptance algorithm, students must decide whether to acquire information
before submitting their rank-order lists. However, uncertainty about the final assignment low-
ers the expected gain from learning, thereby reducing social welfare, compared to a scenario
without such uncertainty. Our experiments demonstrate that the welfare loss is greater with
more opaque admission systems. The empirical social welfare obtained in our experimental
treatments is consistently lower than the theoretical welfare, and we identify non-equilibrium
learning as a main contributor.
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1 Introduction

In college admissions markets, students often face multiple forms of uncertainty. In particu-

lar, they face admission uncertainty, which arises from students’ inability to precisely assess
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their admission chances at the time of application, and preference uncertainty, which stems
from their initial lack of information about how well each college fits them. We study a
centralized college admissions environment in which colleges rank applicants by caliber, yet
students do not know their exact position in the priority order when they submit their rank-
order lists (ROLs). Crucially, students can mitigate preference uncertainty by engaging in
costly information acquisition before submitting their ROLs. Our analyses, both theoretical
and experimental, investigate how admission uncertainty interacts with students’ incentives
to acquire such information.

Admission uncertainty is pervasive in practice, as colleges typically rely on evaluation
components that students cannot fully observe or translate into precise admission proba-
bilities (e.g., essays, recommendation letters, or interviews). Consequently, students often
cannot precisely predict their admission chances in advance, though the degree of uncertainty
varies with the transparency of the admission system. For instance, students in China and
Australia experience limited admission uncertainty because they have access to their final
scores and admission priorities. In most Chinese provinces, students submit their ROLs
after learning their National College Entrance Exam (gaokao) scores, which are the pri-
mary determinant of priority (Chen and Kesten, 2017). In Victoria, Australia, applicants
submit initial ROLs and may revise them after receiving their Equivalent National Tertiary
Entrance Rank (ENTER) scores, which are the sole determinant of admission for most appli-
cants (Artemov, Che, and He, 2020). In contrast, students in France face greater uncertainty
because colleges evaluate applicants based on multiple factors—such as high school GPA,
grades in specific subjects, and qualitative assessments—making it difficult for applicants to
assess their priority or exact admission chances (Hakimov, Schmacker, and Terrier, 2023).1

Resolving preference uncertainty requires students to uncover idiosyncratic attributes
that are difficult to observe ex ante and are valued differently across students—such as
program content, campus culture, location and living arrangements, and career networks.
This learning process is intricate and resource-intensive. For example, many universities host
undergraduate information days and campus tours, which are designed to furnish prospective
students and their parents with details about their academic programs. Students also seek
information through open classes, conversations with current students and alumni, and online
reviews or social media. However, acquiring such information across all relevant colleges is
typically costly, both in terms of money and time, forcing students to selectively invest in

gathering information about specific colleges.?

'We thank an anonymous referee for bringing these examples to our attention.

2Visiting colleges and universities in expensive cities in the US can cost $2,000 for one trip in
2021. See “Set a Budget for College Tours” by Farran Powell in the USNews (https://www.usnews.
com/education/best-colleges/articles/2016-07-12/set-a-budget-for-college-tours) and “Col-
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Our model highlights that students’ incentives to acquire information are influenced not
only by the costs of obtaining information but also by the admission uncertainty. Formally,
we consider an admission system that employs the deferred acceptance (DA) algorithm
proposed by Gale and Shapley (1962), with two colleges and a unit mass of students. Each
college has a limited capacity, and each student possesses an exam score that is privately
observed. This score aggregates all pertinent factors known to the student, including their
ACT/SAT scores or high school GPAs. Colleges evaluate students based on final scores,
which are unobserved by students and imperfectly correlated with their exam scores. All
students have the same prior beliefs about the colleges, reflecting academic quality or public
school rankings, but each student can learn about individual preferences or suitability for
the colleges by incurring costs. Accordingly, students’ college rankings may change based on
the information they acquire.

The DA mechanism requires students to submit their preference rankings over the col-
leges, and so students acquire information before submitting their ROLs. In equilibrium,
students’ information acquisition follows simple threshold rules: students learn about a col-
lege when the learning cost is low, and then learn about the other college when the first
learned suitability is neither too high nor too low. Moreover, the DA allocation can be
summarized by cutoff final scores, so that students with high final scores are assigned to
their top-ranked college, whereas those with intermediate scores are assigned to the other
college. Despite this general structure of information acquisition, the intensity of learning
varies with admission uncertainty, which in turn depends on the extent to which final scores
are correlated with the exam scores that students possess. For instance, if the final scores are
perfectly correlated with students’ exam scores, students can infer their admission prospects
from their exam scores, effectively eliminating admission uncertainty. In contrast, if the
final scores are completely random, even students with high exam scores will still experience
significant admission uncertainty.

To examine how admission uncertainty affects students’ information acquisition incen-
tives and welfare, we compare DA with a hypothetical benchmark admission system in which
students make learning decisions after knowing their admission outcomes. In our stylized
framework, the benchmark is implemented through a simple version of decentralized match-
ing in which students apply to colleges without incurring application costs, colleges admit
students based on their final scores, and students then choose among the colleges that admit-

ted them.? In this benchmark, it is straightforward that students would acquire information

lege Visit Expenses: Don’t Overlook These Smaller Costs” by Melissa Brock (https://collegefinance.
com/college-admissions/college-visit-expenses—dont-overlook-these-smaller-costs).

31t is not necessary that the benchmark be implemented by such a decentralized matching. We discuss
alternative matching mechanisms that yield the same outcome in Remark 2.
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after being admitted by both colleges. The idea is that, once students acquire information
after knowing where they are admitted, and thereby face no admission uncertainty, then the
transparency of the admission system should not affect their learning decisions. Moreover,
allocations in this benchmark are characterized by cutoff scores: high-final score students
are admitted by both colleges, while mid-final score students are admitted by only one. This
allows for a clear comparison of students’ learning behavior under DA and the benchmark.

Building on this comparison, we show that admission uncertainty generates differences
in learning behavior between DA and the benchmark along two margins: who learns the
suitability (extensive learning margin) and how much information they acquire (intensive
learning margin). First, conditional on learning about one college, students in DA have
weaker incentives to learn about the other college because they remain uncertain about their
final assignment, lowering the intensive learning margin. Second, under DA, students must
weigh learning costs against admission probabilities, so the extensive learning margin varies
with the learning cost, whereas in the benchmark, only those admitted by both colleges learn,
who face no admission uncertainty. Thus, when the learning cost is high, only students with
high exam scores learn under DA, reducing the extensive learning margin. When the cost
is low, however, students with lower exam scores start to learn, but the welfare gains from
this expansion are limited because they are less likely to be assigned to their top choices.
Consequently, in both cases, students’ overall welfare under DA is lower than under the
benchmark.

While the theoretical analysis predicts lower welfare under DA relative to the benchmark,
the effect of translucent admissions on students’ learning decisions is complex. As the corre-
lation between final scores and exam scores weakens, students with lower exam scores may
realize high final scores and thus have stronger incentives to learn, while those with high
exam scores become more likely to realize lower final scores, reducing their incentives to
acquire information. To develop optimal learning strategies, as suggested by the theoretical
analysis, students must form accurate beliefs about admission probabilities, which depend
on the learning decisions of other students as well as their own exam scores. This task is
quite challenging for students in real life, leading them to potentially behave sub-optimally,
which necessitates an empirical analysis.

We propose an experimental design to study how admission uncertainty, arising from the
timing of learning and the transparency of admission systems, provides different incentives
for students to acquire information. We implement our experiment with four treatments: a
treatment with high transparency (i.e., final scores are more correlated with exam scores)
and a treatment with low transparency (i.e., final scores are less correlated with exam scores)

for each of DA and the benchmark system. We develop a simple experimental environment



that allows us to observe whether each individual subject acquires information about one or
both colleges, how this is influenced by the transparency of admission systems, and when the
information is acquired.*

We find that the observed learning behaviors in our experiment are largely consistent
with the theoretical predictions. First, under DA, most students learned before submitting
their top-choice colleges, unless their exam scores were so low that they had no chance to
be admitted by the “better” college (having a higher admission cutoff). Second, in the
benchmark, most students learned after being admitted by both colleges, unless their exam
scores are so high that they will surely be admitted by any college they apply to. Across all
treatments, students who had already learned the suitability of one college further learned
the suitability of the other college substantially more often when the suitability of the first
college was neither too high nor too low, as the theory suggests. However, inconsistent
with theory but in line with findings from the recent experimental studies on school choice
(e.g., Chen and He, 2021b; Hakimov, Kiibler, and Pan, 2023), we observe deviations from the
equilibrium learning. Both over-learning and under-learning occurred, though under-learning
was more frequent and of greater magnitude.

Our experimental data confirm the key welfare implication of our model. When the
transparency is high, the empirical social welfare obtained in DA is not significantly dif-
ferent from that in the benchmark admission system. However, when the transparency is
low, the empirical social welfare obtained in DA is significantly smaller than that in the
benchmark admission system. Nevertheless, social welfare obtained in each of our experi-
mental treatments was consistently lower than the theoretical welfare level. The observed
discrepancy is due not only to the non-equilibrium learning discussed above but also other
types of non-equilibrium decisions, including mistakes in the top-choice college submission
in DA and in the application decisions in the benchmark, and mistakes in the attendance
decisions. We decompose the welfare losses (relative to the equilibrium predictions) and
identify that non-equilibrium learning is the main contributor to the observed welfare loss
in all treatments.

Our findings suggest that admissions policies that reduce uncertainty—through greater
transparency or disclosure of relevant information—can improve students’ information ac-
quisition and welfare. They also highlight that when optimal behavior requires sophisticated
beliefs about admission probabilities, complementary interventions that simplify or stan-

dardize information may be necessary.

4Specifically, we separate individuals’ learning decisions from all other decisions including the choice of
the top college in DA and the application decision in the benchmark by providing two decision panels that
run independently on their screen. See Section 3 for more details.



Related literature.

Previous studies in the matching literature have examined how costly information acqui-
sition affects matching outcomes in college admissions. Chen and He (2021a) theoretically
analyze students’ incentives under DA and the Boston (Immediate Acceptance) mechanisms,
showing that students have an incentive to learn their own cardinal and others’ preferences
only under the Boston mechanism. Chen and He (2021b) is an experimental companion pa-
per to Chen and He (2021a). Unlike theirs, our paper does not compare different matching
mechanisms. It also differs in learning technologies: students in their setting can learn both
their own and others’ preferences, whereas students in ours can only learn their own. Never-
theless, consistent with their findings, we also observe suboptimal learning in the laboratory.

Our work aligns with Artemov (2021) and Hakimov, Kiibler, and Pan (2023) in exploring
the effects of admission uncertainty on welfare.> Artemov (2021) shows that in the random
serial dictatorship (RSD), students gather less information than the social optimum. He
also suggests policies to reduce admission uncertainty, thereby enhancing students’ welfare.
Our model incorporates RSD and the serial dictatorship (SD) as special cases when the final
scores are fully random or perfectly correlated with exam scores, respectively. We show that
SD results in higher welfare than RSD as consistent with Artemov (2021).

Hakimov, Kiibler, and Pan (2023) compare students’ learning incentives under two vari-
ants of serial dictatorship: direct SD, where students submit their ROLs in advance, and
sequential SD, where students choose colleges sequentially in priority order without initially
submitting ROLs. They show that the sequential SD improves students’ welfare by eliminat-
ing admission uncertainty. While our findings are consistent with theirs in showing welfare
gains from reducing uncertainty, the underlying mechanisms differ. Their model assumes
that colleges are grouped into distinct “tiers,” with all students strictly preferring any col-
lege in a higher tier and colleges within a tier being ex-ante symmetric. In this setting,
the sequential SD makes students acquire less information by forcing them to focus on the
best available tier at the timing of learning, thereby avoiding wasteful information acqui-
sition. In contrast, our model allows for ex-ante asymmetry across colleges, and students’
preferences can be reversed depending on learning outcomes. As a result, in our benchmark
model, students are encouraged to acquire more information, which improves the quality of
student-college matches and leads to higher overall welfare.

Our paper also contributes to the broader literature on search and matching with incom-

plete information in the context of college admissions.® Immorlica, Leshno, Lo, and Lucier

5See also Bade (2015) who shows that in a house allocation problem, serial dictatorship makes agents know
their exact choice set when they make learning decisions and proves that it is the unique Pareto-optimal,
strategy-proof, and non-bossy mechanism when agents may acquire information on their own preferences.
6See Chade, Eeckhout, and Smith (2017) for a recent survey of this literature.



(2020) model students’ information acquisition as a sequential search problem and introduce
“regret-free stability” under costly information acquisition.” While they establish the ex-
istence of such outcomes, they abstract from the detailed process of students’ information
acquisition. Our work complements theirs by providing a full equilibrium characterization
under specific admission mechanisms. Grenet, He, and Kiibler (2022) provide empirical evi-
dence from Germany’s university admissions system, showing that students are more likely
to accept early offers because holding (multiple) early offers prompts them to invest more
time in learning about universities. This aligns with our results that students are more likely
to acquire information when they are more likely to be admitted by both colleges. Chade,
Lewis, and Smith (2014) study students’ application strategies when application is costly
and colleges observe noisy signals of student ability. While their framework shares with ours
the feature that students’ strategic decisions affect their admission outcomes, their focus is
on application portfolio choices—how students choose the set of colleges to apply—whereas
our focus is on the timing and content of learning decisions. Importantly, we conduct a novel
comparative statics analysis on the transparency of admission systems within an experimen-
tal setting.

Our notion of the imprecision of final scores relates to the extent to which they reflect
students’ exam scores. A few recent papers investigate how noisy exam scores (corresponding
to our final scores)—used as a single measure of students’ abilities (corresponding to our exam
scores)—affect matching outcomes under different centralized mechanisms. Lien, Zheng, and
Zhong (2017) compare the Boston mechanism and serial dictatorship, investigating how these
mechanisms achieve ex-ante fairness when admission decisions rely on exam scores that may
not perfectly reveal true ability. Lien, Zheng, and Zhong (2016) bring this comparison to the
laboratory, highlighting the importance of the timing of preference submission (pre-exam vs.
post-exam) created by different mechanisms. Pan (2019) provides evidence from the field
and laboratory that pre-exam preference submission in the Boston mechanism cannot fully
resolve issues created by the exam’s measurement error.

Our findings on ranking and attendance mistakes in the experiment align with patterns
of student behavior under DA documented in recent studies. Regarding ranking mistakes,
Chen and Sénmez (2006) find that about 36% of participants misrepresent their preferences
in a laboratory setting. More recent studies—Artemov, Che, and He (2023), Hassidim,
Romm, and Shorrer (2021), and Shorrer and Sévagd (2023)—report that 17% to 35% of

applicants misrepresent their preferences in college admissions using DA in Australia, Israel,

"They define an outcome to be stable if no student can form a blocking pair with a college or would wish
to collect more information, and regret-free stable if it is stable and each student has acquired information
optimally.



and Hungary, respectively. Attendance mistakes are also related to Narita (2018), who
documents that about 7% of NYC high school applicants do not pursue their assigned schools
but enter a secondary matching process, often due to newly acquired information about
school characteristics or a revised understanding of their own preferences. This parallels our
finding that attendance mistakes are closely associated with suboptimal learning.

The remainder of the paper is organized as follows. Section 2 develops the model and
analyzes students’ learning behavior and welfare implications. Section 3 describes the experi-
mental design and presents testable hypotheses, and Section 4 reports experimental findings.
Section 5 concludes. Proofs are relegated to Appendix A. Appendix B presents the exten-
sion of our model to three colleges. Additional figures and the experimental instructions are

provided in Appendices C and D.

2 Theoretical Analysis

In this section, we develop a theoretical model to analyze students’ learning behavior under
DA. We then introduce a benchmark admission system and examine the welfare implications

of admission uncertainty.

2.1 Model

There are two colleges, 1 and 2, and a unit mass of students. Each college i = 1,2 has
capacity k < % and quality ¢;, with A := ¢; — ¢ > 0 commonly known. Each student is
characterized by (o, é€1,€2). Here, a represents the exam score drawn from a distribution F
on [, @], capturing academic performance or attributes such as ACT/SAT scores or high
school GPA. Each student privately observes her own exam score a. The term ¢; denotes
the student’s idiosyncratic preference, or “suitability,” for college 7; the ¢;’s are independent
of each other and of a. A student’s ex-post value from attending college i is v; = ¢; + €;,
meaning the student enjoys an extra payoff ¢;, in addition to the common quality g¢;.
Although each student’s exam score « is privately known, the idiosyncratic preferences ¢;
are initially unknown. Each student may learn €; by paying a cost ¢, with learning occurring
sequentially: she may learn one ¢; , observe its realization, and then decide whether to learn
the other. If learned, each ¢; is drawn independently from a distribution G' on [-6,J], where
G is continuous, strictly increasing, and symmetric around zero. Consequently, the student’s
value of college i becomes ¢; + ¢; if learned, and remains ¢; otherwise. We assume ¢y > 9 so
attending either college is better than not attending, and A < 20 to avoid the trivial case

where all students prefer college 1 regardless of the realizations of €; and e,.



Colleges rank applicants based on a final evaluation score, denoted by s. This score is
unobserved by students but is imperfectly correlated with their observable exam score «.

Specifically, the final score of a student with exam score « is given by
s=ra+(l1-r)0,

where r € [0,1) is a constant and 6 ~ U[-n,n] represents an evaluation noise or adjust-
ment term. Note that while we refer to a as the exam score, it effectively aggregates all
student-observed attributes. In contrast, the final score s incorporates unobserved evalua-
tion components—such as essays, letters, and interviews—reflecting the reality that colleges
assess more than just academic caliber. In this sense, the parameter » measures the degree
of transparency: while students with higher a are more likely to have higher final scores,
students remain uncertain about their exact priority due to the noise 6.

We consider a centralized admission system using DA in which students submit rank-
order lists (ROLs) to a clearinghouse that simulates the following procedure. In the first
round, students apply to their top choice, and colleges tentatively accept applicants with the
highest scores up to capacity and permanently reject the rest. In each subsequent round,
rejected students apply to their next choice, and colleges re-evaluate all currently admitted
students and new applicants based on their final scores, again tentatively accepting top
students and rejecting the rest. This process continues until there are no more rejections.

The timing is as follows. At ¢ = 0, students observe their own « (but not s) and choose
whether to learn €; and/or €3 or neither. At ¢ = 1, students simultaneously submit their
ROLs. At t = 2, the clearinghouse determines the assignments. Finally, at ¢ = 3, students

decide whether to enroll in their assigned colleges.

2.2 Equilibrium Characterization

We begin with two remarks. First, since DA makes truthful reporting a weakly dominant
strategy for students (Dubins and Freedman, 1981; Roth, 1982), students rank i > j if and
only if the expected value of college i exceeds that of college j.® Second, with a continuum
of students, the DA outcome is characterized by cutoff scores (81, 85) (Azevedo and Leshno,
2016). Suppose §; > Sy (verified later) and consider a student who submits 1 > 2. If s > §,
she is accepted by college 1 in the first round and remains there. If s € [$5, §1), she is rejected

by college 1 in the first round but accepted by college 2 in the second round. If s < §, she

8We assume that if a student is indifferent between colleges, she randomly chooses one to rank higher.
Such indifference arises if (i) she learns only ¢, and finds ¢; +¢€; = g;, or (ii) she learns both €; and e, and finds
q1 + €1 = g2 + €. Both occur with probability zero, so we do not explicitly consider them in what follows.



is rejected by both. Similarly, a student submitting 2 > 1 is accepted by college 2 and is
retained whenever s > 55. Hence, students with s > §; are assigned to their top-choice college,
while those with s € [$5,51) are assigned to college 2 regardless of their ROLs.

The following theorem characterizes equilibrium learning and ROL submission decisions.

Theorem 1. There exists a unique equilibrium in which s; > S and students’ learning and
ROL submission decisions are as follows: for each «, there exist ¢(a) and €(«) such that
(1) for c>¢(wa), students do not learn the suitability and submit 1 > 2.
(ii) for c <¢(a), students learn €; for some i, and then they submit
(a) i > j without learning €; if ¢, > €(a) + (i — 7)A;
(b) i>(<)j when g;+€; > (<)qj+€; after learning €; additionally if |e;+(i—7)A| < €(a);
(c) j >1i without learning €; if ¢, < —€(a) + (i — 7)A.

Proof. See Appendix A.1. [ ]

To understand students’ learning behavior, consider a student with exam score a who
has already learned €;. If she does not learn ey, then the expected values of colleges are

E[vile1] = ¢1 + €1 and E[ws|e; ] = go. Her expected payoff is

u(er;a) = Qa(a)ge + Q1 () (A + €1 )le5ony,

where @Q;(a) = Prob(s > 5;|a) is the probability that her final score exceeds §;, and 1y is
the indicator function. The first term reflects the baseline payoff from college 2, received
with probability Q2(«), regardless of her ranking. The second term captures the additional
payoff from ranking college 1 first when ¢; > —A, in which case she is admitted to college 1
with probability @1(«) and gains (g1 +€1) — g2 = A + €; relative to attending college 2. Next,
suppose that the student chooses to learn €, as well. She will then rank ¢ > j if ¢; +¢; > g; +¢;.

After some algebra, her expected payoff can be written as

e1+A
u(€eler; @) = Qo) g + Q1 () ./:5 (A + € —€)dG(er).

Again, the first term reflects the expected payoff from college 2, while the second term
captures the expected additional gain from ranking college 1 first.

The difference u(esg|er; ) — u(er; ) represents the expected gain from learning ey given
€1. Thus, the student learns it if and only if this gain exceeds ¢, which is equivalent to
€1 € (-€(a) = A€(a) = A) for some threshold €(a). Panel (a) of Figure 1 illustrates this
relationship. For a given «, the gain from learning is small when ¢ is either high enough to

prefer college 1 or low enough to prefer college 2, even without learning e;. Accordingly, she

10



[ 100— —
25¢ 25¢ -E(a)-A . €la)-A

a=70 i>] if g+€>0;+€;
a=30 21 152
------ c=10

5t | 152 12

: 1100 100
. L g 0 I I I I I I I I I q ok i L
6-A 100 10 20 30 40 o 60 70 8 90 100 -A 0 &

-100 -€-A -A E-A
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Figure 1: Learning and ROL submission decisions in DA. Parameters: a ~ U[0,100],
0 ~ U[-100,100], ¢; ~ U[-100,100], A =20, k =7 = 0.4, ¢ = 10. The resulting equilibrium values are
(81,82) ~ (45.21,30.98), ¢(«) = max{0.24a—2.08,0}, and o*. Panel (a) depicts u(esler; a) —uler; o)
(solid curves). Panel (b) shows ¢(«) (solid line) and o* ~ 50.35. The dashed lines in (a) and (b)
indicate the cost c¢. In panel (c), the gray region represents students with o who have learned
€1 € (—e(a) - Ae(a) + A).

does not learn €; and submits 1 > 2 if ¢; > €(a)-A, or 2> 1 if ¢; < —€(a)-A. For intermediate
values, she learns €; and ranks the college with the higher realized value. Panel (a) also shows
that the gain from learning increases with a. This is because students with higher o have
a higher chance of admission to college 1, making the acquisition of additional information
more valuable. As a result, the threshold €(«) increases with a.

We now turn to students’ initial learning decisions—whether to learn €;. Let
Vi(a) == max{U(er; ) — ¢, U(€y, €2; ) — 2¢}

denote the ex-ante expected payoff for a student with o from learning ¢;. The first term in
the braces is the expected payoff from learning only €;, where U(ey; ) := E[u(er; )], and
the second term is that from learning both €; and €5, where U(€q, €2; ) := E[u(esler; )] A
student chooses to learn ¢; if and only if Vi(«) exceeds the ex-ante expected payoff from
submitting 1 > 2 without learning, Vj(«) := Qa()ge + Q1(a)A. As shown in panel (b) of
Figure 1, there exists a ¢(a) such that V;(a) > Vy(«) if and only if ¢ < ¢(«), or equivalently,
a > a*, where o satisfies ¢(a*) = ¢. Thus, students with o < @* do not learn e, while those
with o > a* do, following the learning and ROL submission strategies described earlier.
Panel (c) of Figure 1 summarizes these behaviors.

The analysis for the case where students learn e, followed by €; mirrors the previous case.
A student learns €; after observing s if €; € (=€(a) + A, €(c) + A), and learns €, initially if

Va(a) > Vo(a), where V() is defined analogously to Vi(«). Importantly, in Appendix A.1,
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we show that V;(«) = Vo(«) for all o, meaning that the learning order is irrelevant. To see
why, note that when students learn only one ¢;, learning €¢; can change the student’s ranking
if e, < —A (i.e, ¢1 +€1 < ¢2), and learning €5 can change the ranking if €5 > A (i.e., ¢1 < g2 +€2).
By the symmetry of G, Prob(e; < —A) = G(-A) = 1-G(A) = Prob(es > A), so learning
either €1 or €5 provides the same information about the colleges” expected values. Similarly,
for a given ¢;, additional learning of €; matters only when it alters the rankings, and the
order is irrelevant since €; 2 € — A < g1 +€1 2 @2+ €3 < €2 S €1 + Al

The discussion so far is based on a given (§1,53). In the proof of Theorem 1, we show
that the cutoff scores are endogenously determined so that the mass of students assigned to

each college equals its capacity, and that no equilibrium satisfies §; < $s.

Remark 1. The irrelevance of learning order does not generally extend to settings with
more than two colleges. To illustrate, consider three colleges with q; > g2 > ¢3 and ¢; — ¢2 =
g2 — q3 = A. Suppose that the learning cost is high enough that students can learn only
one ¢; for i = 1,2,3. In this case, it is optimal to learn ey. Intuitively, learning €, can yield
the rank orders 1 >2 >3 (if 4 > qa+€3>¢q3),2>1>3 (if o+e2>¢q >q3), or 1 >3 >2
(if 1 > g3 > g2 + €2). In contrast, learning €; yields 1 > 2 >3 (¢ +€1 > q2 > ¢3), 2> 1> 3
(g2 >q1+€1>q3),0r 2>3>1 (g2 >q3 > q+¢€1). While the first two rank orders arise with the
same probability under both learning strategies, the third differs: the condition for 1 > 3 > 2
(i.e., € < —A) is more likely than that for 2 >3 > 1 (i.e., €; < =2A). Thus, learning €, is more
likely to revise the rank order and therefore yields a higher expected payoff than learning ¢,
(or likely €3). When students can learn multiple ¢;’s at low cost, this suggests a sequential
search problem with an endogenous learning order, which is beyond the scope of this paper.

Nevertheless, a tractable extension arises when colleges are ex-ante symmetric, ¢, = ¢» =
g3 = q. In this case, the learning order is irrelevant and the learning decision resembles the
two-college setting: a student with « learns any ¢; if ¢ < ¢(a) and proceeds to learn ¢; if
le;| is below a threshold, and so on. A key difference from the two-college case is that the
expected gain from learning €;, after observing ¢;, depends on the sign of ¢;. If ¢; > 0, the
student compares colleges 7 and j, as college i’s value, q + ¢;, exceeds that of college k, ¢g. If
€; <0, she instead compares j and k, since college 7 now offers less than ¢. Aside from this,

the structure of learning remains similar. See Appendix B for a formal analysis.

2.3 Benchmark Admissions System and Welfare Analysis

In this section, we study students’ welfare. Formally, we define student welfare as

SW = (MVy+ MVy) —cmy,
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Figure 2: Learning and enrollment decisions in the benchmark. The parameters are
the same as those in Figure 1. In equilibrium, ¢ = 16, € ~ 36.57, and (51, $2) ~ (40,30.98). The
solid lines in panels (a) and (b) represent u(es|e1) — u(e2) and ¢, respectively, and the dashed line
represents c. In panel (c), the gray region represents students who have learned €; € (—é-A,e—A).

where MV is the aggregate expected value of students attending college i (given the infor-
mation they have), and my, is the mass of students who learn at least one ¢;. Intuitively, the
“match value” MV; + MV, increases as more students learn and are assigned to the college
that has a higher value. Facing preference uncertainty, students have incentives to learn suit-
ability since, by doing so, they can increase their expected value by reducing mis-assignment.
Admission uncertainty, however, reduces incentives to learn since it lowers admission prob-
abilities and thus the expected return to learning, thereby potentially reducing welfare.

To isolate the effect of admission uncertainty on welfare, we introduce a benchmark ad-
missions system that preserves preference uncertainty but eliminates admission uncertainty
by allowing students to make their learning decisions after admission outcomes are known.
We then compare welfare under DA and the benchmark. In particular, our benchmark cap-
tures the welfare loss driven by preference uncertainty alone (i.e., the loss due to costly and
incomplete learning when admission outcomes are known), while the additional gap between
DA and the benchmark captures the welfare loss attributable to admission uncertainty.

Consider the following benchmark admissions process: at ¢ = 1, students apply to colleges
at no cost; at t = 2, colleges admit students based on their final scores; and at ¢ = 3, students
decide where to enroll. In this benchmark (a hypothetical decentralized admissions system),
it is a weakly dominant strategy for students to apply to both colleges and delay learning
until they have observed whether they are admitted by both colleges (but before making an
enrollment decision). Since students’ payoffs from attending colleges are independent of their
exam scores, their learning decisions in this benchmark do not depend on a.. Apart from this,
the analysis is analogous to that of DA. Specifically, since §; > §5, students with s > §; are

admitted by both colleges, those with s € [$5, §1) are admitted only to college 2, and the rest
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Figure 3: Allocations for those with s > 3.

are rejected. Consequently, only the first group—those admitted to both—may benefit from
learning, while the second group enrolls in college 2 without learning. For the first group,
learning and enrollment decisions mirror those of DA, except that Q1(«) = Q2(«) = 1 since
they are already admitted to both colleges. Figure 2 illustrates the equilibrium decisions
in the benchmark using the same parameters as in Figure 1, assuming that students learn
¢; first. Note that the thresholds ¢ and € in Figure 2 correspond to ¢(«) and €(a) in DA
evaluated at Q1(a) = 1. It follows immediately that ¢(a) < ¢ and €(«) < € for all a.

We now use the benchmark to interpret the welfare consequences of the two sources of
uncertainty. Assume that students, if they choose to learn, begin by learning €; under both
DA and the benchmark. They then proceed to learn €; if €; € (=€(a) - A, €(a) = A) under DA
and €, € (—é—A,€-A) under the benchmark. Since €(«) <€, we have (—¢(a) -A,é(a)-A)
(=€ - A,e-A), so conditional on learning €, students are less likely to acquire additional
information under DA. That is, DA yields a lower intensive learning margin. To understand
its welfare implication, see Figure 3, which illustrates allocations of students with final
scores exceeding §;. The left panel depicts the optimal allocation under full information:
students are assigned to college 1 if €; > €5 — A and to college 2 otherwise. The right panel
shows allocations under the benchmark and DA. In the benchmark, students learn e, only
when € € (=€ — A€ - A), so those in region I (resp., II) attend college 1 (resp., 2), even
though they would have preferred college 2 (resp., 1) if they had learned e,. This generates
an efficiency loss due to preference uncertainty: even without admission uncertainty, mis-
assignment is inevitable because learning is costly and therefore incomplete. Admission
uncertainty amplifies this inefficiency under DA by further shrinking the range of realizations
of €1 in which learning e, is privately optimal. Precisely, since €(a) <€, students in regions

I and IT" also forgo learning €; and are mis-assigned.
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Turning to the extensive learning margin, recall that ¢(a) < ¢ for all a and ¢(a*) = c.
For any ¢ < ¢, students with a > a* under DA and those admitted by both colleges under
the benchmark learn at least one ¢;. Since a* is increasing in ¢, fewer students acquire
information under DA as c¢ rises, whereas it remains constant in the benchmark as long
as ¢ < ¢. That is, admission uncertainty makes participation in learning more sensitive to
learning cost. When ¢ is high, DA yields both lower intensity and lower participation in
learning, leading to lower welfare. When c is low, DA may exhibit a larger extensive margin,
potentially raising welfare. However, in this case, although students with lower exam scores
begin to learn, they are less likely to be assigned to their preferred colleges. Consequently,
their learning has less welfare impact than that of students with higher exam scores, who
are more likely to be assigned to their desired colleges and therefore have a greater impact
on welfare.

Let superscripts D and B denote the equilibrium values under DA and the benchmark,

respectively. The observations above yield the following results:

Theorem 2. SWP < SWZE for any r € [0,1), whereas SWP = SWE at r = 1. Moreover,

SWEB is invariant in r for any A >0, and SWP increases in r whenever A = 0.

Proof. See Appendix A.2. ]

The welfare comparison of SWP across different values of r is complicated. When r = 1,
no students face admission uncertainty, and only those with sufficiently high exam scores
acquire information. As r decreases, however, students with high exam scores become more
likely to receive low final scores, reducing their admission chance to preferred colleges and so
lowering the expected gain from learning. Conversely, those with low exam scores become
more likely to receive high final scores, strengthening their incentives to learn. This asym-
metry complicates theoretical predictions about the welfare effects of admission uncertainty.

A tractable case arises when A =0. In this case, we have §; = $5 = 5, so Q1 () = Q2(«) =
Q(«). In the proof of Lemma A6 in Appendix A.2, we show that

dQ(«) _ a-Elo]
dr 2n(1-r)?

This highlights the aforementioned asymmetry: as r decreases, students above the average

exam score, E[a], face a lower admission probability, while those below the average face a

dsw?P
dr

higher one. We further show that the sign of coincides with that of

*dQ(a) 1- Fla*] .
fa* I dF(&):m(E[a|aza ]—E[a])zo’
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which implies that SWP increases in r. Intuitively, changes in r affect Q(«) directly and
also influence a* (or ¢(«r)) and €(«) indirectly through Q(«). However, for small changes in
r, the indirect effects are second-order: the marginal type o* is indifferent between learning
and not learning, and the marginal type who learns €(«) is indifferent between learning one
€; or two. As a result, the welfare change mainly comes from the direct effect of r on Q(«),
leading to an increase in SWP.

Although it is analytically intractable to derive such a result when A > 0, a similar
intuition would hold. Therefore, we experimentally consider an environment in which the
monotonicity is preserved and empirically investigate the impact of the transparency using

our experimental data.”

Remark 2. Given that real-life decentralized admissions often involve instability and con-
gestion, one might consider alternative benchmarks. Hakimov, Kiibler, and Pan (2023) study
“sequential serial dictatorship,” where students choose universities sequentially by priority
order without submitting ROLs; in our setting, it yields the same outcome as our benchmark
because students can decide whether to learn suitability when it is their turn to choose. An-
other relevant alternative is a “real-time” college-proposing DA, in which students respond
in each round by accepting or rejecting an offer without submitting ROLs upfront. The DA
mechanism used in Victoria, Australia, is of this kind: applicants submit ROLs before scores
are released but may revise them after scores are released (Artemov, Che, and He, 2020). In
our setting, such a system induces learning (and any ROL revision) only for students with
final scores above $1, and therefore yields the same outcome as the benchmark.

While Theorem 2 highlights the informational inefficiency of DA, this does not necessarily
imply that DA yields lower welfare than decentralized admissions. In our continuum model
with no aggregate uncertainty, DA loses its advantages over the benchmark. With a finite
number of students and endogenous effort choices, decentralized admissions may involve
mixed application strategies (Hafalir et al., 2018), and DA eliminates colleges’ enrollment
uncertainty under aggregate preference uncertainty (Che and Koh, 2016). Nonetheless, our
welfare analysis nests existing results: when r =0, DA reduces to random serial dictatorship
(RSD), and when r = 1, it becomes serial dictatorship; Theorem 2 therefore implies that
RSD yields lower welfare than SD, consistent with Theorem 5 of Artemov (2021).

9We have numerically verified that under the parameters used in Figures 1 and 2 as well as the experi-
ments, SWP increases in r € [0,1].
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3 Experimental Design and Hypotheses

3.1 Experimental Design and Procedure

Our focus is on studying how different timings of information acquisition lead to different
student welfare depending on the transparency of admission systems. To this end, we imple-
ment our experiment that features a 2x 2 treatment design as presented in Table 1. The first
treatment variable concerns the transparency of the admission system captured by r € [0, 1].
r = 1 refers to the case of a fully transparent system, in which the single determinant of
admissions is «, which is known to each student. r = 0 refers to the case of fully opaque
system, in which the single determinant of admissions is 6, which is completely unknown
to each student. We choose r = 0.9 and r = 0.6 for our treatment design.'® The second
treatment variable concerns whether the admission system is DA or the benchmark (BA).
Treatments DH and DL (BH and BL) denote the DA (BA) system with high and low
transparency, respectively. We refer to DH, DL and BH, BL as the DA and BA treatments,
and to DH, BH and DL, BL as the high- and low-transparency treatments, respectively.
The parameters and distributions chosen for our experiments are as follows: « ~ U[0,100],
0 ~U[0,100], & ~ U[-100,100], ¢ = 10, k = 0.4, A = g1 — g = 170 = 150 = 20, consistent with
Figures 1 and 2, where the supports of the distributions are discretized to involve integer

values only.

Table 1: Experimental treatments

Transparency of Admission System
High (r=0.9) Low (r =0.6)

Deferred Acceptance (DA) DH DL

Benchmark Admission (BA) BH BL

Admission System

Our experiment was conducted using oTree (Chen, Schonger, and Wickens, 2016) at the
HKUST via Zoom with the real-time online mode. Three sessions were conducted for each
treatment. A total of 190 subjects were recruited from the graduate and undergraduate
population of the university.!! When invited, subjects were instructed to find a quiet place
to stay for the entire duration of the experiment and join the designated Zoom meeting

using their own laptop or desktop computer.'? Turning on their video for the entire course

10The choice of r for our experimental design is guided by the fact that students in DA have no incentives
to acquire information if r is too small (below 0.3 in our experimental environment). We thus chose a
sufficiently large r to ensure that learning occurs in equilibrium.

" The number of participants was 49, 49, 47, and 45 for Treatments DH, BH, DL, and BL, respectively.

12\We recommended they not use their mobile phone or tablet PC to join the experiment due to the
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of the experiment was a strict requirement and chatting among subjects was prohibited by
the Zoom settings. Each received an electronic copy of the experimental instructions via the
chat message in Zoom. To ensure that the information contained in the instructions was
public knowledge, the instructions were read aloud via Zoom. We used a between-subject
design.

We illustrate the instructions for Treatment DH. The full experimental instructions for
Treatment DH and Treatment BH are available in Appendices D.1 and D.2, respectively.
There were two colleges, College 1 and College 2. The colleges were simple mechanical
admission functions that admitted students as follows.'? Upon receiving an application,
each college admitted a student based on her exam scores (E) and interview scores (1) as
well as an exogenously given admission cutoff. £ and I were randomly and independently
drawn according to the uniform distribution over {0,1,2,...,99,100} and correspond to «
and 6 for each student, respectively. Then, the exam score was announced to the student
privately while the final score was sent to every college she applied to without being revealed
to her.

Note that admission cutoffs are exogenously given by the theoretical predictions with
capacity k = 0.4 for each college based on the model presented in the previous section with
a continuum of students. It is as if an individual subject in our experiment cannot influence
the admission decisions of the colleges and thus take the admission cutoffs as given. By doing
so, we abstract away the colleges’ strategic decisions. This approach allows us to focus on
investigating students’ learning decisions and their impact on the welfare generated by each
admission system. Without colleges’ strategic decisions, the remaining problem becomes a
single-person decision problem for each student.

After the exam score (E) was revealed to each subject, she was asked to indicate her top
choice between College 1 and College 2. Then the admission procedure began as follows:

1. The admission office sent the application to the college of her top choice.

2. The college accepted her application if her final score T'= 0.9 x £ + 0.1 x I was higher

than its own admission cutoff given as follows:

DH | BH | DL | BL
511363 | 35 | 45.21 | 40
52 23 30.98

3. If her application was accepted by the college of her top choice, the admission process

was finalized. Otherwise, the admission office sent her application to the college of her

potential concern of the presentation quality of the oTree game platform and of unexpected technical issues.
13As a result, participants in our experiments only played the role of students while the colleges were not
strategic players making a deliberate choice.
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second choice that decided whether to accept her application based on her final score
T and the admission cutoff.

4. If her application was accepted by the college of her second choice, the admission
process was finalized. Otherwise, she was not admitted by any college, and the process
was finalized.

In case she received admission, she was asked to decide whether to pursue a college or not.

The gain a subject obtained from a college depended on how well the college suited her,
corresponding to the value of college ¢; + ¢; for each i = 1,2. The gain (in tokens) from
College 1, denoted by G1, was randomly and independently chosen from {70, 71, 72, ..., 269,
270}, while each integer in the interval was equally likely. The gain from College 2, denoted
by G5, was randomly and independently chosen from {50, 51, 52, ..., 249, 250}, while each
integer in the interval was equally likely. The gain became part of the earnings if and only if
a college admitted the subject and the subject decided to pursue it.'* Otherwise, a subject
received the default gain of 50 tokens.

GG and G5 were unknown to a subject at the beginning of each round. Once each round
began, the decision screen for each subject contained two panels (left and right): one panel
for the application decision and the other panel for the learning decision (see Figures D1
and D2 in Appendix D.1 for the screenshots). The placement (left or right) of the two panels
was uniformly randomly chosen for each subject in each round. The learning panel allowed
subjects to learn what the exact gain from College 1 (i.e., the value of G1) was. If the subject
decided to learn it, she needed to pay 10 tokens. Then, the subject further decided whether
to learn what the exact gain from College 2 (i.e., the value of Gy) was.!® If she decided to
learn it, the subject needed to pay an additional 10 tokens. Note that the two panels were
always presented side-by-side, and each panel ran independently from the other panel. Thus,
it was entirely up to each subject 1) whether to learn none/one/both of G and Gy and 2)
when to learn them. Subjects could learn none/one/both before or after they were admitted
by a college or colleges. The learning cost did not depend on the timing of learning.

The earnings from each round were the gain from admission minus the total cost of

M\While we assume that attending college is strictly more beneficial than not attending, our experimental
design allowed subjects to choose whether or not to attend a college after being admitted. Some may argue
that this design choice was unnecessary. However, research conducted by Narita (2018) using NYC high
school matching data suggests that a significant proportion of students may not pursue their immediately
available option due to various psychological reasons. Artemov, Che, and He (2020) and Shorrer and Séviago
(2023) also document that a non-negligible fraction of Australian and Hungarian college applicants adopt
unambiguously dominated strategies in strategically straightforward situations. Therefore, allowing subjects
to choose whether or not to attend college may provide valuable insights into decision-making processes and
the factors that influence them.

15We fixed the order of learning because it is not our primary objective to test the order-neutrality
prediction.
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Figure 4: Outcome comparison

learning paid if a college admitted a subject and the subject decided to pursue it. Otherwise,
it was the default 50 tokens minus the total cost of learning. At the end of each round, we
provided feedback to each subject on her 1) exam score, 2) interview score, 3) final score,
4) which college(s) admitted her, 5) which college she pursued, 6) learning decisions, 7) G
and G5 regardless of whether she paid to learn none/one/both of them, and 8) the earnings
from the round. For the payment, one round out of the 30 rounds was randomly chosen.
Including an HKD 40 show-up fee, subjects received, on average, HKD 190 (» USD 25). All
payments were made electronically via the autopay system of HKUST to the bank account
an individual participant provided to the Student Information System (SIS). Each session

lasted approximately 1 hour on average.
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3.2 Experimental Hypotheses

Figure 4 describes the outcomes from the theoretical predictions for the high- and low-
transparency treatments, respectively, where the benchmark cases in both figures consider
only those who are admitted by both colleges. The learning decisions, the top choice college
in the case of DA and which college to pursue in the case of BA depend on two variables,
G1 (gains from College 1) presented on the horizontal axis and E (exam scores) presented
on the vertical axis.

The key difference of DA relative to the benchmark admission system is the timing of
learning. In the DA environment, students must learn before submitting their top-choice
college, and there is no reason to learn further afterward. The BA offers different incentives
to students. On one hand, according to the weakly undominated strategy equilibrium,
students have incentives to learn only after they are admitted by both colleges. On the
other hand, if the exam score is above 38.9 in BH and 66.7 in BL, students know that both
colleges will admit them, regardless of the interview scores, so the timing of learning does

not matter. Our first hypothesis summarizes this result.

Hypothesis 1 (Timing of Learning Gy). a) In Treatments DH and DL, students learn
only before they submit their top choice college. b) In Treatments BH and BL, students
whose exam scores are below 38.9 in BH and 66.7 in BL learn only after they are admitted

by both colleges.

The fact that students learn only after they are admitted by both colleges in the BA
treatments implies that their first learning decision on G; must be independent of the exam
score, as long as their exam scores are below 38.9 in BH and 66.7 in BL, which is demon-
strated by the right panel of each of Figures 4(a) and 4(b). The area below E = 27.78
labeled as “Learn nothing” in the right panel of Figure 4(a) indicates that students whose
exam score is below 27.78 cannot be admitted by both colleges regardless of their interview
scores. However, in the DA treatments, the same learning decisions are crucially dependent
upon the exam scores, as illustrated by the left panel of each of the two figures. We thus

have our second hypothesis, as follows:

Hypothesis 2 (E-Dependence of G, Learning). a) In treatments DH and DL, students
learn Gy only if the exam scores are above 36.17 in DH and 50.35 in DL. b) In treatments
BH and BL, conditional on being admitted by both colleges, whether students learn G does

not depend on their exam scores.

We now shift our attention to the G4 learning decisions. Among those who already learned

(G1, whether they further learn G5 depends on the realization of (G in a specific way. As
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Table 2: Social cost of pre-application learning

Mvy MV, TC SW My MV, TC SW
DH | 8155 6148 8.70 | 138.33 DL 7779 63.64 6.60 | 134.83
BH 82.30 65.85 9.12 | 139.03 BL 82.30 65.85 9.12 | 139.03
Social cost of pre-application learning: 0.7 Social cost of pre-application learning: 4.2

illustrated by Figure 4, the decisions are dependent upon whether the realized value of GGy is
in the range [113.25,186.75] in all four treatment conditions.'6 Thus, we have the following
hypothesis.

Hypothesis 3 (G2 Learning). Among the students who already learned Gy, the proportion
of students who further learn Gy is substantially higher when the realized value of Gy is in
[113.25,186.75] in each treatment.

Our last hypothesis is about social welfare, our key prediction. Table 2 provides theo-
retical values of social welfare for each treatment. It illustrates that social welfare in DA is
determined by the different learning decisions guided by different degrees of transparency.
As a result, the social cost of pre-application learning, defined as the difference in social
welfare between the two admission environments, is small (0.7) under the high transparency
while that becomes substantially larger (4.2) under the low transparency. This result is

summarized by our next hypothesis.

Hypothesis 4 (Social Cost). The difference in the average social welfare between treat-
ments DL and BL is substantially larger than that between treatments DH and BH.

4 Experimental Results

We conduct our primary analysis using data aggregated over the last 20 rounds for each
individual. All qualitative results are robust to the use of data from all 30 rounds or from
the last 10 rounds. We begin in Section 4.1 by analyzing the G; learning decisions and then
move to analyze the G5 learning behavior. Section 4.2 presents the welfare analysis. In
both G; and G5 learning decisions, we identify non-equilibrium decisions, motivating us to
have Section 4.3 that is devoted to investigating non-equilibrium decision-making and the

welfare consequences. Appendix C presents four scatter diagrams (Figures C1 and C2) that

16Precisely speaking, this statement is not true because of the two triangular regions below the U-shaped
gray areas in the left panels of Figures 4(a) and 4(b). However, we do not specify any testable hypothesis
regarding those regions because it is unlikely for us to have sufficient observations that belong to those
(small) regions in our data.
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Figure 5: Learning (G; in treatments DH and DL

correspond to the theoretical counterparts presented in Figure 4, providing a general picture
of the learning decisions observed in the laboratory, and several additional histograms for

learning decisions.

4.1 Learning of G; and Go

Figure 5 presents the G learning (and timing of learning) decisions of students in treatments
DH (two top panels) and DL (two bottom panels). When reporting the results, we divide
observations into two categories. The left panels present the learning decisions made by
students whose exam scores were above 36.17 in DH and 50.35 in DL: students in this
category have incentives to learn before submitting their top choice college. The right panels
present the learning decision made by the remaining students: theory predicts that they will
not choose to learn anything at any time. To provide a more comprehensive understanding
of the subjects’ learning decisions, Figure C3 in Appendix C presents two histograms with
a bin size of 10, separately for DH and DL. These histograms reaffirm our qualitative
conclusion by showing that our findings are not contingent on the binary categories used in
our main figures.

Three observations emerge. First, under-learning is observed in both DH and DL. The
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proportion of students who learned G in the first category is slightly above 70% but below
the theoretical prediction of 100%. Second, non-negligible proportions of those who have
no incentives to learn decided to learn as reported in the right panels of Figure 5. In its
magnitude, this observed over-learning is not as large as that of the under-learning. Third,
if they learned, students almost always learned before submitting their top choice college.

The last observation allows us to confirm Hypothesis 1(a).

Result 1 (Timing of learning G; in DH and DL). In treatments DH and DL, the vast

majority of students learned G before submitting their top choice colleges.

Figure 6 presents (G; learning (and timing of learning) decisions of students in treatments
BH and BL. Observations are divided into four categories. In each treatment, the top-left
panel presents the learning decisions made by students whose exam scores were above 38.9
in BH and 66.7 in BL such that both colleges admitted them (regardless of the interview
scores). The top-right panel presents the learning decisions made by those who had exam
scores below 38.9 in BH and 66.7 in BL but were admitted by both colleges ex-post after
the interview scores were realized. The bottom-left panel presents the learning decisions
made by students whose exam scores were above 38.9 in BH and 66.7 in BL, so they were
supposed to be admitted by both colleges, which did not happen due to the fact that they
did not apply to both colleges. The bottom-right panel presents the learning decisions made
by those who did not get admitted by both colleges with their exam scores below 38.9 in
BH and 66.7 in BL. Figures C4 and C5 reported in Appendix C present two histograms
each for the learning (¢; decision based on E with the bin size of 10 as well as whether
being admitted by both colleges or not. These histograms provide further support for our
qualitative conclusion, demonstrating that our findings remain consistent regardless of the
binary categories employed in our primary figures.

A few observations are immediately clear in Figure 6. First, similar to the DA treatments,
we observe under-learnings (relative to the equilibrium learning) in both BH and BL. Except
for the fourth category, with exam scores below the cutoffs and without multiple admissions,
students were supposed to learn G; 100% of the time. The observed frequencies of learning
G are below 100%. Second, the left-bottom panels of Figures 6(a) and 6(b) report that
students who received exam scores above 38.9 in BH and 66.7 in BL but did not apply to
both colleges always learned G; before admission. Knowing that they would be admitted
by both colleges, they learned which college suits them better even before admission and
applied only to the better one. This behavior is optimal, even though we did not specify it
in our theoretical analysis focusing on the weakly dominant strategies. Third, the two upper

panels of Figures 6(a) and 6(b) indicate that vast majorities of students who applied to and
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were admitted by both colleges learned GG, after they were admitted by both colleges. Last,
students with exam scores below 38.9 in BH and 66.7 in BL who did not have multiple
admissions rarely learned G;. The last two observations allow us to confirm Hypothesis 1(b)

as follows:

Result 2 (Timing of learning G; in BH and BL). The vast majority of students who
applied to and were admitted by both colleges learned G after being admitted by both colleges
in both BH and BL. Without multiple admissions, the vast majority of students whose exam
scores were below 38.9 in BH and 66.7 in BL did not learn G1.

Regarding Hypothesis 2(a), the positive proportions (7.4% and 22.5%) of learning ob-
served in treatments DH and DL (the two right panels of Figure 5) from the students with
exam scores below the cutoff values are not overwhelmingly large. Overall, the outcome is
qualitatively consistent with the theoretical prediction because the vast majority of students
who learned Gy are those who had exam scores above the cutoffs. Comparison of the pro-
portions of learning G; between students with exam scores above and below E = 38.9 in
treatment BH (89% vs. 83.3% on average) presented in the two top panels of Figure 6(a)
enables us to confirm the first part of Hypothesis 2(b). These two values are not statistically
different from each other (two-sided Wilcoxon test, p-value = 0.787). The same conclusion
is drawn if we compare the proportions in treatment BL (81.3% vs. 78%) presented in the
two upper panels of Figure 6(b). Again, these two values are not statistically different from
each other (two-sided Wilcoxon test, p-value = 0.780). The following result summarizes these

findings.

Result 3 (E-dependence of G learning). In treatments DH and DL, the vast majority
of students who learned G were those with exam scores above 36.17 in DH and 50.35 in
DL. In treatments BH and BL, the Gy learning decisions made by the students who were

admitted by both colleges did not depend on their exam scores.

Figure 7 presents the percentage of students who further learned G5 given that they
already learned GG;. Theory suggests that students who already learned G; have an incentive
to learn Gy only if G is in the range of [113.25,186.75]. The one-sided Wilcoxon test reveals
that the percentage of students who further learned G, is significantly higher (p-values
< 0.0001 for all four treatments) when Gy is in [113.25,186.75] than when it is not. This
observation allows us to confirm Hypothesis 3. However, suboptimal learning behaviors—
both under-learning (i.e., the gray bars are below 100% in Figure 7) and over-learning (i.e.,
the dark and light blue bars are above 0% in Figure 7)—are observed across all treatments.

Both types of suboptimal learning are substantial in magnitude. This observation motivates
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us to look into the suboptimal decisions in more detail in Section 4.3. In Appendix C, two
sets of histograms, labeled as Figure C6 and Figure C7, present a total of four histograms.
These histograms showcase the learning decisions regarding G5, categorized based on the
realization of G5, and are displayed with a bin size of 10 for each of the four treatments.
These additional histograms contribute to the reinforcement of our qualitative conclusion, as
they demonstrate the consistency of our findings irrespective of the binary categories used

in our primary figures.

Result 4 (Gs learning). Among the students who learned Gy, the proportion of stu-
dents who further learned Gy was substantially higher when the realized value of G1 was
in [113.25,186.75] in each treatment. However, a substantial degree of suboptimal learning

was observed in all treatments.

4.2 Welfare Analysis

Table 3 presents the ex-ante social welfare values that theory predicts based on the uniform
prior of G; and Gs (i.e., those presented in Table 2), as well as the ex-post social welfare
values (presented in boldface) calculated based on the realizations of Gy and Gy according
to our experimental data.!'” Given the large number of observations we have in our data,
the ex-post social welfare values are reasonably close to the ex-ante values, and most of the

ordinal welfare rankings are preserved, except that the social welfare value in DH (139.27)

1"When calculating the ex-post social welfare values, we take the realization of G and Gy from our data
and calculate the welfare based on the optimal strategy of the player.

27



Table 3: Theoretical Social Welfare

DH MV, MV, TC SW DL MV, MV, TC SW
Ex-ante | 81.55 61.48 8.70 | 138.33 Ex-ante | 77.79 63.64 6.60 | 134.83
Ex-post | 82.02 65.86 8.61 | 139.27 Ex-post | 77.47 65.79 6.30 | 136.96

R 0.94 R 2.13

BH My MV, TC SW BL MV, MV, TC SW
Ex-ante | 82.30 65.85 9.12 | 139.03  Ex-ante | 82.30 65.85 9.12 | 139.03
Ex-post | 81.23 65.65 8.98 | 137.90 Ex-post | 77.50 69.02 9.28 | 137.25

R -1.13 R -1.78

B The ex-post social welfare values are calculated based on the optimal strategy of the player but by taking the
realizations of G; and G2 from our data (instead of the uniform prior).

B When G; = G2 and a student is admitted by both colleges, we assume that the student attends college 1 so that
the corresponding matching value goes to college 1. There was one such tie case each in DH and BH.

Table 4: Empirical Social Welfare

MV MV, TC | SW MV, MV, TC | SW
DH | 81.56 61.32 6.70 | 136.18 DL | 69.56 68.22 6.22 | 131.56
BH | 85.73 57.14 8.31 | 134.56 BL | 75.34 65.66 7.08 | 133.92

m The empirical social welfare values are calculated by adding the realized values of MV; and MV, across all subjects
and then subtracting the total learning cost C paid.

is (marginally) larger than that in BH (137.90); apparently, the law of large numbers does
not fully apply.
Table 4 presents the empirical social welfare values calculated using our data. Now we

are ready to calculate the empirical social cost (SC) of pre-application learning as follows:
SC = Adjusted Empirical Social Welfare in BA — Adjusted Empirical Social Welfare in DA,
where

Adjusted Empirical Social Welfare = Empirical Social Welfare Value - R.

R =(Ex-post Social Welfare — Ex-ante Social Welfare) is a correction term to get rid of the
effect of the different ex-post realizations of G; and G4 across treatments. For example, the
gap between the ex-post social welfare and the ex-ante social welfare in DH is (139.27 —
138.33) = 0.94 while that in BH is (137.90 - 139.03) = —1.13. Because both of them originate
solely from the realizations of (G; and G5, we need to adjust the empirical social welfare by

adding the correction term. Then the empirical social costs of pre-application learning for
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the high perfectness environment and the low perfectness environment are respectively

SCy
SCL

(134.56 + 1.13) — (136.18 - 0.94)
(133.92+1.78) - (131.56 - 2.13)

0.45,
6.27.

Recall that the theoretical values for the social cost of pre-application learning provided in
Table 2 are 0.7 and 4.2, respectively. The two-sided Mann-Whitney test confirms that the
adjusted empirical social welfare in BH adjusted with the correction term is not different from
the empirical social welfare in DH (p-value= 0.07314), implying that SCp is not significantly
different from 0. However, the same non-parametric test shows that the empirical social
welfare in BL, adjusted with the correction term is significantly different from the empirical
social welfare in DL (p-value= 0.007593), implying that SCp is significantly larger than
0. Another noticeable observation is that, in all treatments, the empirical social welfare
values are strictly below the ex-post values presented in Table 3. The empirical social
welfare being strictly below the ex-post welfare is driven by the non-equilibrium learning
decisions reported in the previous two subsections. This result also implies that the higher

the transparency of admission system in DA the higher the empirical social welfare.

Result 5 (Social Welfare). In all treatments, empirical social welfare values are strictly
below the theoretical levels. The social cost of pre-application learning is significantly larger
than zero in the low transparency environment but that is not the case in the high transparency

environment.

4.3 Non-equilibrium Learning and Welfare Decomposition

Where does the observed discrepancy between the empirical social welfare values and the
theoretical ones come from? Apparently, the non-equilibrium learning identified in the pre-
vious subsections must be responsible. In this section, we thus investigate non-equilibrium
learning more carefully and quantify the welfare loss (relative to the theoretical level) caused
by different types of non-equilibrium decisions.

Non-equilibrium learning can be either over-learning or under-learning, where the former
(the latter) implies that a student acquired more (less) information than the optimal amount
prescribed by the equilibrium. Depending on whether the excessive (missing) learning is on
G only, G5 only, or both, we categorize the non-equilibrium learning as over-learning (under-

learning) (7 only, G only, or both. For example, “over-learning Gy only” covers the cases

18The observed (individual-level) average welfare loss ranges between 3.09 and 5.40. These values are
equivalent to 2.3%-7.4% of the empirical social welfare values and comparable to 40%-87% of the learning
cost paid.
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Figure 8: Decomposition of Welfare Loss from Suboptimal Learning

in which a student received an offer from one or no college but learned G either in the pre-
admission or in the post-admission stage.'® For each observation classified as suboptimal
learning, we calculate the welfare difference between the theoretical value (that the individual
could have achieved if he/she were making the optimal learning decision) and the empirical
value (coming from the suboptimal learning decision). The calculated welfare differences are
aggregated for each category, and the results are reported in Figure 8.20

The decomposition of the welfare losses created by different types of suboptimal learning
reported in Figure 8 leads to the following observations. First, in all treatments, under-
learning was considerably more prevalent than over-learning. Second, among different types
of under-learning, under-learning G| only was the greatest contributor to a welfare loss.
Third, more suboptimal learning was observed in the low-transparency treatments (DL
and BL) than in the high-transparency treatments (DH and BH). However, combining
all welfare losses from suboptimal learning does not fully account for the observed welfare
discrepancy presented in Table 4. For example, the welfare loss from all kinds of suboptimal
learning in treatment DL was only 2.57 (= 0.37+0.19-0.13+1.50+0.20 +0.44), which covers
less than half of the total welfare loss (5.40). This observation implies that there must be

19“QOver-learning G only” covers the cases in which 1) a student received offers from both colleges, learned
that Gy is either below 113.25 or above 186.75, but decided to learn G further, and 2) a student learned
that G is either below 113.25 or above 186.75 but learned G further then applied to only one college.
“Over-learning both” covers the cases in which the total score is below the admission cutoff of College 1 but
at any point both G; and G are learned. Under-learning is categorized and defined in a consistent manner.

29Both over-learning and under-learning could generate positive welfare gain ex-post. For example, in
treatment DL, when the exam score is strictly below but sufficiently close to 50.35, the optimal decision is
to choose College 1 as the top choice without learning. However, one could make a suboptimal decision to
learn both G and Ga. If G2 > G1 + 20 (the total learning cost paid) then suboptimal learning allows the
decision-maker to submit the top choice of College 2 and get admitted, leading to a positive welfare gain.
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Figure 9: Decomposition of Welfare Loss from Non-equilibrium Decisions

other types of non-equilibrium decisions being made by our subjects.

Figure 9 reports the result from the decomposition of the welfare losses created by differ-
ent types of suboptimal decisions that include not only suboptimal learning but also other
types of mistakes. Clearly, suboptimal learning is the greatest contributor to the observed
welfare loss, but it alone does not fully account for the entire amount. Two other kinds
of suboptimal decisions are made in the ranking reporting (in DH and DL) / application
(in BH and BL) decisions and attendance decisions. For example, mistakes in the ranking
reporting in treatments DH and DL cover cases in which a student learned both G; and
G; with G; > G; but submitted the top choice college as j and the cases in which a student
submitted the top choice college as the ex-ante worse one without learning. The application
mistakes in treatments BH and BL cover cases in which a student applied only to College 2
even though he/she was supposed to be admitted by College 1 ex-post if he/she applied to
College 1. The attendance mistakes cover cases in which one or more offers were made but a
student did not pursue any college. This result is consistent with the empirical findings from
the literature including Artemov, Che, and He (2023), Rees-Jones (2018) and Shorrer and
Sovago (2023) that a non-negligible proportion of applicants in various matching contexts

adopted dominated choices.

Result 6 (Non-equilibrium Decisions). In all treatments, substantial degrees of non-
equilibrium decisions are observed. Querall, non-equilibrium learning decisions are the great-

est contributor to welfare loss.

Notably, non-equilibrium attendance decisions are responsible for a large proportion of

welfare loss in the DA treatments while (almost) no such mistakes are made in the BA
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treatments. To understand why this occurred only in the DA treatments, we first take a
closer look at all 11 observations with attendance mistakes in treatment DL. In all but
one case, the subjects chose College 1 (the ex-ante better college) as their top choice college
without learning anything. With only one exception, the post-admission learning about both
colleges or the college admitting the student occurred before the final rejection decision was
made. This post-admission learning made students realize that they were admitted either
by the college with a lower (than the other one) realized gain (8 cases) or by the college
with a higher realized gain but the realized gain itself was not large (95 in one case and
111 in the other case) relative to the default gain of 50. The overall picture of the 5 cases
involving attendance mistakes observed in treatment DH is exactly the same. All these
observations suggest that the rejection decisions (attendance mistakes) are associated with
suboptimal post-admission learning and may result from the disappointment students had
when they learned they were admitted by the college with a relatively lower realized gain.
In Treatment DL, we also had mistakes in the ranking choice (top choice college) as
another important contributor to the welfare loss, as indicated by the dark blue bar in
Figure 9. The same kind of ranking choice mistakes was observed in treatment DH, but
their welfare consequences were smaller (1.40 vs. 0.33). The observed suboptimal behavior

2L In treatment DL, 37 cases out of 39 in total occurred

is driven mainly by pessimism.
when students had no incentive to learn at all because their exam scores were below the
cutoff 50.35.22 Without learning, students in all 37 cases pessimistically chose College 2,
the ex-ante inferior college, as their top choice. However, the final total scores were above
the admission cutoff for College 1, so they would have been admitted to the ex-post better
college if they had chosen College 1 as their top choice. In treatment DH, we had only 11
such cases, and the difference in their frequencies (39 in DL vs. 11 in DH) stemmed from
the different degrees of transparency in these two treatments: students with low exam scores
were more likely to be admitted by the college with a higher admission cutoff in treatment
DL. As a result, pessimism led to a real mistake more often with lower transparency.

Do people learn to make fewer mistakes over time? Figure 10 presents the proportions of
suboptimal decision-making. While the trend decreases over time across all treatments, the
decline is modest except in two cases: the first 10 rounds in BL and the last 10 rounds in
DL. In all cases, the proportions of suboptimal behavior remain above 25%, suggesting that

learning occurs only to a limited extent. It is also evident that more frequent suboptimal

21The mistakes in the ranking choice observed in the DA treatments cannot be regarded as a behavior
to distort the system and take strategic advantage over other students (see, e.g., Rees-Jones, 2017) because
there are no strategic interactions among students in our environment.

22In the other 2 cases, students learned both G; and Ga before submitting the topic choice, but they
submitted the college with a lower realized value.
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behaviors are observed in the DA treatments compared to the BA treatments, with a larger
difference noted in the low transparency environment. This result explains why the empirical
social cost of pre-application learning in our data is not as substantial as the theoretical
value in general, and is even insignificantly different from zero in the low transparency
environment.??

Why do people make non-equilibrium and thus suboptimal decisions? Although our ex-
periment is not designed to address this question directly, we observe that subjects were more
likely to make a suboptimal decision that led to a less substantial payoff loss. The average
payoff losses from each suboptimal learning, ranking/application choice, and attendance de-
cision are 8.9 x 1073, 79 x 1073, and 121 x 1073, while the corresponding treatment-average
frequencies are 290, 13.75, and 4.5, respectively. This observation is in line with payoff-
dependent mistakes, one of the most conventional ways to model mistake behavior in game
theory, including Myerson (1978), Blume (1993), and McKelvey and Palfrey (1995).

5 Concluding Remarks

We theoretically and experimentally investigate the college admission system via DA when
students’ incentives to acquire information are influenced not only by the costs of obtaining
information but also by the admission uncertainty that arises from the lack of full trans-
parency in the admission system. In our theoretical analysis, we characterized students’
learning and enrollment decisions and identified the efficiency loss of DA induced by pre-

application learning relative to a benchmark system with post-admission learning. Consistent

2Figure C8 in Appendix C presents the time trend of the welfare loss. It indicates that the time trend
of the welfare loss is more volatile in the high transparency environment than in the low transparency
environment.
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with our theory, we found in the laboratory that most students in DA acquired information
only before submitting their top-choice colleges, while those in the benchmark acquired in-
formation after being admitted by both colleges. We also observed substantial degrees of
suboptimal learning, as well as other suboptimal decisions, that contribute to the observed
welfare loss.

A main contribution of our study is to empirically provide clear comparative statics re-
sults on how admission transparency influences students’ incentives to acquire information.
These results underscore the policy implication of transparent admission criteria and ac-
cessible information. When students can more accurately access their admission chances,
they are more likely to acquire information on suitability and make choices that improve
match efficiency. Conversely, opaque admission process both complicate decision-making
and weaken incentives to seek information, thereby lowering overall welfare. Accordingly,
policies that increase transparency—such as clearly describing the admissions process or
providing guidance on how GPA translates into admission chances—can help students make
better-informed choices, reduce the welfare costs of admission uncertainty, and improve effi-
ciency in higher education matching markets.

Our findings also suggest that the degree of uncertainty students face during informa-
tion acquisition should be an important consideration in the design of college admissions
systems. Although it is not straightforward for the designer to induce a particular degree
of uncertainty, it is not outright impossible either. For instance, Hakimov, Kiibler, and Pan
(2023) show in their experimental setting that providing historical cutoff scores in the direct
serial dictatorship improves students’ welfare. Similarly, Artemov (2021) proposes several
policies, including the disclosure of priorities, that improve welfare when students’ informa-
tion acquisition matters in the random serial dictatorship. Although it is beyond the scope
of this paper to design a particular mechanism, our analyses suggest that it is important
to understand how the uncertainty that students face is translated into the informational

(dis)advantage of different admission mechanisms.
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Online Appendix

In this appendix, we provide omitted proofs, discussions on more than two-college case,

additional figures and tables, and sample instructions of the experiment.

A  Omitted Proofs

A.1 Proof of Section 2.2

For given §; > S5, we establish Lemmas A1 to A3 that characterize students’ learning behav-

iors. We then show that §; > S5 in equilibrium.

Lemma A1l. Suppose §1 > So. For each «, the following results hold.
(1) u(ejlei; o) —u(ej;a) =0 if e 20— A wheni=1,7=2 orea < A—-0§ wheni=2,5=1.

Otherwise,
5

u(ejlesa) —ule) =Qi(a) | (1-G(e;))de;,
lei+(G-1) A
which is strictly increasing (resp., decreasing) in €; for ¢; < (j—i1)A (resp., € > (j—1)A).
Moreover, u(e;le;; a) —u(e;; o) is increasing in o.
(i1) For a given c, there exist €(a) such that u(e;jle; ) —u(ej;a) > ¢ if le;+ (§—1) Al < €(w),

whenever u(ejle;; o) —u(e;; o) > 0. Moreover €(av) is increasing in «.

Proof. (i). Suppose, first, that ¢ = 1 and j = 2. Then, we have u(e;; ) = Qa(a)ge+Q1 () (A+
€1) if €1 > —A and u(e; ) = Qa(a)qq if €5 < —A. Next, observe that

u(eda;) = [ {Q@) 0+ ) + [(@x(0) - Qu(0)) (a2 + ) }CHe)

+f;é Qa2(a)(q2 + €2)dG (e2)
' e1+A
= Qu@)a+ i) [ (Ara-e)dG()

[ Qa(a)ga + Qi) (A +e) if €,>6- A, Al
Qa2(a)ga + Q1 () f_é(mq)(l ~G(e))dey if e <d—A,
where the last equality holds since for €; > - A,
RN "(A+e —6)dG(e) = A+ for e, > 6 - A
[ (A+€ —€)dG(e) = f‘jEA € -e) (:2) €1 or €1 2 )
- s G(Eg)dGQ=f_(61+A)(1—G(62))d62 for eg <0 - A,



using the integration by parts and the symmetry of G for the case that ¢; < §—A. Combining
them together, we have that for A <9,

0 if €1 2 5 - A,
u(€zler; o) —uler;a) =1 Q1 (a) [—(A +e1)+ f_i1+A(1 — G(Eg))dGQ] if e €[-A,0-A),
Q1() [ arey (1= Glea))des if € < —A,
and for A >0,
0 if e, 20-A,

u(€sler; ) —u(er;a) =
{Ql(a) [—(A +ep)+ [—6(61+A)(1 - G(EQ))dEQ:I if €1 €[-0,0 - A).

Thus, u(€sler; ) = u(er; ) for €1 > § — A. Next, we establish the following result.

Claim A1l. For any €€ [-0,0],

—€+ [j(l—G(e))dez[66(1—G(e))d6>0.

Proof . For €€ [0,0], observe that

-z+[j(1-G(e))de=-z+[60(1-G(e))de+fo5(1-G(e))cze
=—ij(e)de+f05(1—G(e))de
:—fo(1—G(e))de+f05(1—c;(e))de=[5(1—0(6))de>o.

The proof for the case with € ¢ [-5,0) is similar, and we omit it. O

Note that for e; <6 — A, let € = ¢; + A. Then, the desired result follows from Claim Al.
Next, consider the case that i = 2 and j—1. Then, it is easy to see that u(ez; ) is Q2()(ga+€2)
if e3> A and is Qa(a) (g2 + €2) + Q1() (A - €3) if €3 < A. We also have that

b
u(erfeg; ) = Qa(a)(qz + €2) + Q1 () fez_A(A +e1 - €2)dG(er)

) {Q2(a)(q2 v6)+Qu(a) [ (1-G(e))der if &> A0, )

Q2(a)(q2 +€e2) + Q1(a)(A - 2) if eg <A -0

The remaining proof is analogous, and so we omit it.



(11). Suppose u(e€;le;; ) —u(ej; ) > 0. Define €(ar) such that

Q1() [66(1 - G(e))de = c.

Note that since @ («) is increasing in «, so is €(«). Otherwise, the left-hand side becomes

smaller than c. m

Lemma A2. Suppose 1 > S9. For each «, the following results hold.
(1) Ule;; ) =U(ej; ) 2 Vo(av), where the inequality is strict if A <0.
(11) U(ei,ej;a) =U(ej,€50) > Ule; ).

Proof. (i). From (2.2),

Q2(a) g2+ Q1(a) [(A +6)dG(e)  if Az,

5
Uler;a) = u(er;a)dG(er) =
[6 {Q2(O{)q2 + Ql(a) f_éA(A + El)dG(El) if A<,

and similarly,

Qa2(@) g2 + Q1(@) [(A - €)dG (&) if A>3,

5
U(ey;a) = u(er; 0)dG(€3) =
/:6 {Q2(a)q2 +Q1(a) fj(A —€9)dG(eg) if A<,

Hence, U(ey; ) = U(eg; ) = Qa(a) g+ Q1()A = Vo(«) for A > §. Suppose A < §. Note that

[?(A-e)da(e):[ja(e)dp[5(1-0(-6))016:[:(1-0(6))616:[Z(A+e)da(e),

hence, we have

Uer:0) = Ulesa) = Qu()as + Qi) [ (1= G0)de
) )
:Qg(a)q2+Q1(a)[A+/A(1—G(e))de)]:V0(a)+Q1(a)fA(I—G(e))de. (A.3)

(ii). Observe that U(ey, ;) = f_éé u(€er; a)dG(er) and so from (A.1),

5 5-A 6
Uler, e2:0) = Qa(a) s + Q1 () [A_A(AJrel)dG(el) [ [(A a —G(ez))dEQdG(el)],
and similarly, U(e, €1;a) = f_% u(er]e; )dG(ey) and so from (A.2),

U(eg, €1;a) = Qa(a)qa + Q1 () [[j_é(A - €2)dG(€3) + —/A: [;_62)(1 - G(el))deldG(@)] .

3



Note that

3 A-§ JAY)
[M(Am)da(el):5G(A-5)+[§ G(e)de=[6 (A = e)dG(ey),

using the integration by parts. Thus, the first terms in the square-bracket of U(eq, €2; ) and

U (e, €1; ) are identical. Next, observe also that

[:_A [jA+61)(1 - G(e2))dea dG(er) = [;_A [(Zm) Glrea)derdGla)

_ f ;‘A / j G(t)dt dG(e;) = fA 55 f j_SG(t)dth(s)
:fA:LA_s(l_G(_t))dth(s):fA:/_im(l_G(el))deldG(eg).

This shows that the last terms in the square-bracket of U(ey,€x;a) and U(eg, €1;) are

identical. Arranging terms yields that

5-A
U(er,ea;a) =U(eg, e1;) = Vo(a) + Q1 () [5 (1-G(A+¢€))G(€)de. (A.4)

Thus, U(e;,€e;0) > U(e;a) = Vo(a) for A > 5. To see Ule;,ej;a) > Ule;a) for A < 6,
observe that from (A.3) and (A.4),

Ules,e5:0) - Uless ) :Ql(a)[[;_A(1-G(A+e))a(e)de—/A5(1—G(e))de] (A.5)

- Q1(a) :/:_Au CG(A+€))G(€)de + [;Au CG(A+€)G(€)de - fﬁ

° G(e)de]

- Qu(a) :[i_Au -G(A+ )G~ [

~Q1(a) U:_Au _G(A + )G (e)de - [;Au _G(-A-)(1 —G(—e))de]
- r6-A 6-A

Q)| [ Ta-aarcede- [ (1—G(t))(1—G(A+t))dt]

~ 0y(a) /2(1 L G(A +€)G(e)de + [OM

A
G(A +€)G(6)d€]

(1= G(A +€))(2G(e) - 1)de] 50,

where the fifth equality follows from change of variable (t = -A —¢), and the last equality
holds since that G(e) > § for any € > 0 by the symmetry of G. [ ]

Lemma A3. Suppose §1 > §5. For each «, the following results hold.
(i) There exists ¢(a) such that V() > Vo(a) whenever ¢ <¢(a).

(ii) There exists a* such that ¢ <¢(«) if and only if o > a*.



Proof. (i). Fix any « and suppose that A > 4. In this case, U(e;; ) = V() and from (A.4),

Uleisej;a) = U(esa) = Q1(w) [;_A(l - G(€))de =: ¢().

Therefore, if ¢ > ¢(a), V(a) = U(e;;a) — ¢ < Vo(a); and if ¢ < é(a), V(o) = U(e;, €5 00) — 2c.
In the latter case, V() > Vo(«) if and only if ¢ < @ from (A.4). Hence, we let ¢(«) = @
Next, suppose that A < 4. Define

&) = Ulen eja) - Ulena) = Qi (a) [[:_Au S G(A + )G (e)de - [:(1 - G(e))de] ,
o) = Ules0) ~ Vo) = Qi(a) [ (1~ Ge))de

from (A.5) and (A.3), respectively. Note that U(e;,€;) —2¢ > U(e;) —c if and only if ¢ < é(a),
and u(e;; ) — ¢ > Vp(a) if and only if ¢ < é(a). Next, let

W(A: Q) = &(a) - é(a) = Q1 (a) [f;_A(l _G(A +€)G(e)de—2 f:(l _ G(e))de]

Observe that W (A; «) is strictly increasing in A and W(0; ) < 0 < W(d;«).?* Hence, there
exists a unique A° € (0,9) such that W(A% «) = 0.

e For A € [A°4), it holds that é(a) < ¢(a). Note that for ¢ > ¢(a), U(e;,€55a) — 2¢ <
U(e;; ) — ¢ < Vg, where the last inequality holds since U(e;; ) — ¢ < Vp for ¢ > é(«)
and ¢(a) < é(a) < ¢. Thus, no student with « learns in this case. Next, for ¢ < é¢(«),
U(eisej;a) —2¢ > U(e;;a) — . In this case, U(e,€;;a) —2¢ > Vo(a) if ¢ < 49 and

2
U(e;,;a) —c>Vo(a) if e < é(a). Hence, let ¢(a) = max{ 6(2&) ,e(a)}.

e For A < A it holds that ¢(a) < ¢(a). Note that for ¢ > ¢(a), U(e,€j;a) — 2¢ <
Ul(e; o) — ¢ < Vo(a), where the first inequality holds since ¢ > ¢(a)). Hence, no student
learns. For ¢ < é(a), V() > U(e;; ) —e> Vo(a). Hence, we let ¢(a) = ¢(v).

In sum, ¢(«) is given as follows:

@ for A >,
c(a) = max{é(;‘) ,é(a)} for A°< A<,
é(a) for A < Ao,

W (0) = Qu(e)] [5(1-G(€)G(e)de=2 [y (1-G(€))de | = Q1 ()2 fy (1-G(e))G(e)de=2 [ (1-G(e))de] <
0 by the symmetry of G, and W (§;a) = Q1 () [705(1 - G(6+€))G(e)de > 0.



(7i). Note that since Q;(«) is increasing in «, so are ¢(«) and é(a), further implying that
¢(«) is increasing in . For a given ¢, let a* := inf{a|¢(«) > ¢}. Tt is clear that a* is increasing

in ¢ and ¢ <¢(«) if and only if o > a*. |

Lemmas Al to A3 so far are based on fixed §; > §5. In equilibrium, ($1,82) must be
chosen to make the mass of students assigned to each college equal to its capacity k. We

now show that there is a unique equilibrium in which $; > $s.

Proof of Theorem 1. Let m; denote the mass of students assigned to each college i.

Assuming that all students with o > a* learn ¢; first, m; and m, are given as follows:

my = faa* Qi(a)dF(a) +mps and my= L“[Qz(a) ~ Q1(a)]dF(a) + mar, (A.6)

where

mig = Lf@l(a)[Prob(el >€(a) —A) +Prob(|e; + Al < €(), e < €9 + A)]dF(a),

Moy = [a f@l(a)[Pmb(q <-#(a) - A) + Prob(jes + A| <E(a), 2 > 1 + A) |dF (a).

In what follows, we first show that there is a unique pair (81, §5) satisfying m; = k£ = mo,

and then show that such a pair must satisfy s; > 35. The proof consists of several steps.
Step 1. For any given (81, 82), miz > Moy

Proof . For any a, let Q(«) = Prob(s > 81,5 > 85|a). Rewrite my and my; as follows:

a__ B é(a)-A
Mg = fa Q(a) l(l ~G(e(a) - A)) + [E(LM Ger + A)dG(el)] dF (o), (A7)
Moy = faa Q(a) lG(—E(@) ~A)+ _::)_Au -Ge + A))dG(el)] dF(a). (A.8)

Observe that for any given a, 1 - G(é(a) - A) = G(—é(a) + A) > G(—€(aw) — A) and

e(a)-A e(a)-A
[ (1= G(er + A))dG(er) = f G(=er - A)dG(er)

e(a)-A —€(a)-A
(@) e(a)-A
_ [( GG - f( G+ 2)d6(e),

Thus, we have mqy > mo;. O

Step 2. §1 > §2.



Proof . Suppose §; = §5. Then, Q1(a) = Q2(a), so my = f;* Q1(a)dF («) + mig > My = Moy,

a contradiction. Next, suppose §; < S5. Then, we have

m; = faa* Q1(a)dF(a) + myy > Mgy > my = faa*(Qg(a) — Q1())dF () + may,

where the second equality holds since Q2(«) < Q1 () for each « due to that §; < $, yielding

a contradiction, again. Thus, we must have §; > §5. O
Step 3. There is a unique pair (81, 82) such that my =k = my.

Proof . First, note that since s =ra+ (1 -r)0, a € [a,a] and 0 € [-1,7n], we have s € [s,5]
where s=ra—(1-r)n<s=ra+(1-r)n. Consider m;. Since Q1(«) is decreasing in §; and
so is my. Moreover, §; <'S since otherwise @1 (a) =0 for all a and so m; =0, and $; > s since
otherwise Q1(«) =1 for all & and so §; = s; < $2, a contradiction to Step 2. Since @ («) is
strictly decreasing in §; for §; € (s,3), it follows that there is a unique $; satisfying m; = k.

Next, consider my. Observe that for the fixed §; defined above, it is clear that $; € (s, 7).
Note also that if §5 < s, then my = 1 —-my = 1 -k > k, where the last equality follows
from the definition of §; and the inequality holds since k < % Similarly, if §o > §;, then
My < Mgy < Myp < my = k, where the first inequality holds since Q2(a) < Q1(«), and the
second inequality follows from Step 1. Since my is strictly decreasing in §y for §5 € (s, $1),

the desired result follows. O
Step 4. There s no equilibrium with §1 < Ss.

Proof . Suppose to the contrary that there is such an equilibrium. Observe that in this case,
students with s > 35 will be assigned to whichever college they rank first in their ROL, and
those with s € [81,82) (if §; < 83) are assigned to college 1 regardless of their ROLs. A
straightforward analysis yields that

u(e; o) = Qr(a)E[vi[I]+ Q2(a) (Efva| ] - E[v1]1])14,

where E[v1|I] = ¢1 + €1, E[wg]l] = ¢2 and A = {e1]e; < A} if o(a) = (1,0); or E[n|I] = ¢4,
E[ve|l] = g2 + €2 and A = {es]ea > A} if () = (2,0). Similarly,

u(ejlei; ) = Qi(a)Elvi[I]+ Qa(w) L(—A + e —€1)dG(€s,),

where E[vi|I]=q1 +€ and A={e|ea > e+ A} ifi=1, j=2; or E[vy] = ¢, and A = {e1]e; <
eo — A} if i =2, j = 1. Using them, it is easy to see that for any ey,

w(efer;a) - u(era) = Qufe) [ (1-Gler))der

7



since u(er;a) = Q1(a)(q1 +€1) if €1 > =A; or u(er;a) = Q1(a)(q1 + €1) + Qa2(a)(—e1 — A) if
€1 < —0, and

w(eder;a) = Q)@+ ) + Qo) [ (1-Gle))ies

Similarly, we also have that for any e,
5
u(er]ea; ) —u(er; a) = Q) fl A‘(1 - G(€2))des.
€2—

Therefore, the results from Lemmas Al to A3 follow (with Vo(a) = Q1(a)gr — Q2(a)A),
which in turn imply that

o= [ Qu@)[Probler 2 () - A) + Prob(les + A <E(a), e < €1 + &) [4F (a)

Moy = ‘/a*an(a)[Prob(el <-¢(a) —A) +Prob(|e; + Al < €(), €0 > €1 + A)]dF(a),

assuming that all students with a > a* learn €; first. Note that m,; captures the mass of
students who submit ROL 7 > j among those with > «*. Thus, the mass of students

assigned to each college i = 1,2 is given by

m = [aa*Q1(a)dF(a)+ A “(Qu(@) - Qa())dF () + mpy and  my = may,

where the first term in the RHS of m; is the mass of students who submit ROL 1 > 2 without
learning the suits (since ¢; > ¢2) among those assigned to college 1, and the second term those
with s € [§1,8;) and so assigned to college 1 regardless of their ROLs. Note that mys > ma;

by the same argument in Step 1, which implies that m; > ms, a contradiction. O

A.2 Proof of Theorem 2

Consider the benchmark first and suppose that all students with s > $P learn € first whenever

¢ <. Then, SWB = MVB - TCB. Note that MVB = MV + MV,P and

wve = [Tapr@| [ et [T [T e e)ice) deen)|are),
MVy = ./;OCQ?(OZ) [[_e_A Q2dG(€1)+f€_A (_[6 (QQ+€2)dG(€2))dG(€1)]dF(Oé)

9 —€-A 1+A

¢ [ " (@F(0) - QF(a))dF(a),



Thus, we have

MVB:faaQ?(a)l[_Z(A+€1)dG(61)+[:A(q2—q2)dG(61)

+[::AA([;1+A(A+€1)dG(€2)+LiA(QQ+€2—QQ)dG(EQ))dG(El)]dF(@)
v [ @b (@)dF (o).

The total learning cost is given by

TCH —cmL—f Q5 (a) [f_g_ cdG(e) + f cdG(er) + ff_ QCdG(EQ):IdF( ).

Next, consider DA and suppose that students with « > o* learn ¢; first. Then, SWP =
MVP —TCP. Note that

= [Tap@] [ (@reanices [ [ s apiceicte|ar)

E(a)-A
fa nOP(Q)dF(a),

MVQ —faa [[:( " AdeG(ﬁ) + [:(:)) AA[ (Q2 +€2)dG(€2)dG(€1)] dF( )
fa - QP())dF ()

and so MVP = MVP + MV} is

MVD:faf‘Qf(a)lfe(i)_A(A+61)da(q)

N [:((:))_AA ([;1+A(A +61)dG(es) + [:ﬂ EQdG(@)) dG(el)]dF(Oé)
+ Laqug(a)dF(a) + La* AQ?(a)dF(a), (A.9)

and TCP is written as

TCOP = emP = / . / O / " eda f R dG e |aF
=emp = | ) cdG(ep) + E(a)—AC (e1) + oy cdG(e) [dF ().
(A.10)

We now establishes a series of lemmas that prove Theorem 2.



Lemma A4. SWE > SWP for any r.

Proof. Note that
SWB =MV - TCP
- [T (a)[[_ (3 -G+ [ (-epic(e)
v f AA( f 5 (A + 6, - 20)dG(es) + [ iA(GQ—2c)dG(62))dG(el)]dF(a)
v [ @B @)ndF() (A1)
and
SWP = MVP - TCP
<MVP - f QP (a)[ | R G + / cdG(er) + f ) 2ch(62)]dF(a)
-7 Q{)(a)l [( | (Ara-odo(a)+ [ ;a) (—c)dG(el)]dF(a)
[ E(OM( [ A - 20)dG(e) + f iA(eg—20)dG(62))dG(el)]dF(a)

(a)-A 5

/; QY () g dF () + / QP (a)AdF(a)

=S (A.12)
Since SWB - SWP > SWEB —WD, we show SWE > SW" in what follows. Note that
SW? - SW"
& 5 A
-/ Qf(a)[ [ (dra-odae)+ [ (-od6a)

)

_[O;Q?(a)l[a i (A+e-c)dG(er) + [;(a)_A(—c)dG(q)]dF(a)

. [::AA ([51+A(A + 61 - 20)dG(ea) + ,/;:iA(€2 _ 2c)dG(€2)) dG(El)]dF(a)

. [G(a) “A (/€1+A(A +€1 —20)dG(e3) + feiA(EQ - 20)dG(62)) dG(ﬁ)]dF(a)

€(a)-A -0

" AQP(a)dF(a)

\h
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+[E_A (/61+A(e1 - 2¢)dG(e2) + feiA(GQ —QC)dG(@))dG(El)]dF(O‘)

e-A -0

“[Tar@)| [ a-adcen s [ codo i@
o é(a)-A J

= anB(O[) ' (e1 —)dG(er) + _eA(—C)dG(Gl)
a A J

+ [E(a)_A ([;1+A(61 -2¢)dG(ey) + fin(ez - QC)dG(Ez)) dG(El)]dF(a)‘

e(a)-A

The first equality follows from the fact that

[T @@ =2x= [T P ()ar(),

and to understand the second equality, observe that

k=mP - fa TQ{’(Q)[ f( i)_A 1dG(ey) + f ((:))AA( f (SA 1dG(62))dG(62)]dF(a)

- (A.13)
v [T QP(@)ar(a),
so, we have
[* 2P @r()
Ak fa f@{’(a)[ /( i)_A AdG(er) + ((:))j( f 6A AdG(ez))dG(el)]dF(a)

_ [a “Qf(a)[ fEZAdG(em f AA( f ;1+AAdG(62))dG(61)]dF(a)

- f@{?(a)[ f( i)_AAdG(el)+ da”( [ E”AAdG(ez))dG(el)]dF(a),

€ —€(a)-A )

where the last equality follows from the capacity constraint of college 1 in the benchmark,
that is,

m= [ a@f(a)[ f:A 1dG(er) + j( [ 6A 1dG(62))dG(el)]dF(a):k. (A.14)
Claim A2. [ QF(a)dF(a)> [ QP(a)dF(a).

Proof . Consider the terms in the square bracket of mZ and mP in (A.14) and (A.13),

11



respectively. Observe that for any fixed «,

[ oy o [0 ([ o))
Lt [ ([ wete)acco)

A A —&(a)-A
=f( 1dG(el)—f( ) AG(EHA)dG(el)—[A Ger + A)dG(er)

e(a)-A
A —e(a)-A

- [ a=GaandGe) - [T Gla+ A)iG(e)
A —(a)-A

=f() G(—q—A)dG(el)—[A Gler + A)dG(ey) = 0,

where the last equality holds since

f:_A G - AYG(e)) = f G(1)dG(t - A) - f” G+ NG,

e(a)-A

form a sequence of change of variables t = —¢; — A and 1 =t - A. Thus, we have

mp = [ f@?m)dF(a)[ [aceeos [T 1dG(eg))dG(el)]+ [ @S (@)r ()

—€—

and from the fact that m& = k = mP, we further have

(/aaQ{-“f(oz)dp(oz)—f:Q?(a)czF(a))U:A 1dG(el)+[:AA([:+A 1dG(62))dG(el)]

- [" QP@)ar(a) 20

which yields the desired result.o
Now, using Claim A2, we have
SWE - SW
/ QD(Q)[/ (€1 —¢)dG(er) + f (—¢)dG(€r)
A a1+
, [ L ( [ U (@ -20dG(e) + f NCE 2c)dG(62)) dG(el)]dF(a)

- /MQQ?(&)[./E((;)—A(Q -c)dG(er) + [;(a)_A(—C)dG(El)]dF(a)

12



R [ o A( [ - 20 + | iA<e2—2c>dG<eg>)dG<e1)]dF<a>

e(oz) -A

Ny (€1 -2¢)dG(eq) + (€2 —2¢)dG(e3) — (€1 — ¢) | dG(ey)
e(a)-A :+A :+A
~e(a)-A [;1+A(€1 ~2c)dG(eg) + LiA(E2 - 2¢)dG(e2) - (—c)) dG(el)]dF(a)

AT

N—’

+

L
- [Tera)| [

o N IR CRINE VTR dG(eo]dF(a) 0.

e-A

f " (ea= (e + A))dG(es) - c) 4G (1)

To see the last inequality, observe that

(2= (1 + A))dG(er) - c) dG (1)

oal

fe(e i ( L e2dG(e2) - (61 + A)(1- Gl + ) - dG(e)
((5 (1 +A)G(eg+A) - ﬁ G(eg)des — (61 + A)(1 - G(61+A))—c) dG(er)
|

5 (e +A)- f G(@)d@—[(l (o) )de)dG(el)
e-A

- [( ;)_A(G—(€1+A)— [ Gleyda)icte) - [ ([T (-G@)da)da@@) >0

e(a)-A

where the second equality follows from the integration by parts, and the third equality follows

from the definition of €. Similarly, we also have

€(a)-A e(a)-A
/ ([5 (61 +8) = e2)dG(ez) - ) dG(er) > 0.

A
Therefore, we have SWE > SWP for any r € [0,1). ]
Lemma A5. SW?F is invariant in v, and SWP = SW5B at r = 1.

Proof. To show that SW2E is invariant in r, it suffices to show that [aan(a)dF (o) is
invariant in r for all ¢ = 1,2. This is clear from (A.14), faa QP (a)dF () is a constant. Using
this and m¥ = k, it also follows that [~ QB (a)dF () does not depend on 7.

Next, consider the case that r =1 5o that s = a for each a. In the benchmark, there are
aB > a8 such that QP () = L4sqpy and QP () = Liosapy- Except for this, students’ learning
decisions are the same as before. Similarly, in DA, there are & > &2 such that QP («) =

Liosapy and QP (a) = Lios4py, and students’ learning decisions are the same as before. Thus,
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(o) = QP () is the same as ¢ for a > aP and zero otherwise, and Q{)(a)f;(l - G(€))de
is these same as f;(l - G(€))de and zero otherwise. Therefore, &? = &P for all i = 1,2 and,
consequently, MV.Z = MV.P and TCP =TCP. n
Lemma A6. Suppose A =0. Then, SWP increases with r.

Proof. The proof consists of several steps: we first show that 3; = §5 in equilibrium and then

show that SW?P increases with 7.
Step 1. §1 = §2.

Proof . Suppose s; > 5;. Then, students with s > §; can attend whichever college they rank
higher, while those with s € [$;,8;) will be assigned to college j. For the former group, the
mass of students who prefer college 1 over college 2 (and 2 over 1) is given by (A.7) and
(A.8), with A =0. That is,

miy = f fQi(a)[l - G(e(a)) + f f(a) G(el)dG(el)]dF(oz),
Mgy = f Ql(a)[G( () + f (1- Gel))dG(el)]dF(a)

For a given «, the symmetry of G(-) implies that 1 - G(€(«)) = G(—€(«)) and

[e( (1-G(e1))dG(e) = [7 G(-€1)dG(e,) = [ﬁ G(e1)dG(e)).

€(a)
Therefore, mis = msy, which leads to a contradiction: either college ¢ does not fill its capacity,

or college j exceeds its capacity. Hence, it must be that §; = §5. O

dQ(a) _ a-E[a]
Step 2. =5~ = S(I—r)2 -

Proof . Denote by §:=§; = 89, and Q1(«) = Q2(«) = Q(a) = Prob(s > §|a). Since 6 € [-n,7]
follows the uniform distribution, we have Q(a) =1- _n (Sl T+ 77) Note that s is determined

by the colleges’ joint capacity constraint:

[ eir@) =2t = o M2 e n)ar(0) - 5 (T - TElal +n) < 1-2,

so § =rE[a] +n(1—-r)(1-4k). Substituting this into Q(«) above, we have

) s p(L-4k) + g dQ(a) _ a—E[a]
2n dr 2n(1-7r)2

Qa)=1-
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Step 3. SWP increases in r.

Proof . From (A.9) and (A.10), we have

MV - fa fQ(a)[ f( i (dG(er) + [ ( [ 61dG () + [ @dG(ez))dG(el)]dF(a)

_:5

+ f:qQ(a)dF(Oé%

/a [/—e(a)ch(El) [ cdG(€) + / QCdG(EQ)]dF(a)

where €(«) satisfies Q(«) f;(l -G (€))de = ¢, and o~ satisfies ¢(a*) = ¢ with ¢(«) being given
by ¢(«) = Q(«) [05(1 - G(€))de. Note that at o = a*, €(«) satisfies

TCP

Q) [ (1-G@) = e= Q) [ (1-Ge)de

where the second equality follows from the definition of a*. Hence, €(a*) = 0.

Now, observe that

d]\évD - 0 )Uw Eldg(€1)+/e(<j;>([; EldG(EQ)+fjeQdG(EQ))dG(el)]f(a*)%
o 7 (He o) ) ar o)

-0 [ eldG(e1>f(a*)d—;+ [T (H e o)) ar )

where the last equality holds since €(a*) = 0. Note also that is given by

& d_(oz)

% - H@(E) o)

(e [ e2da<62>)g<e<a>>
de(a)

+( [ 5 (Ce())dG ey + f E(a)ezda(@)) (=e(@))

- g(F(a)) )

( ~e(@) + @G+ [ esz<ez>)

g7

(~e@ctean s [ ado)

=[9(E(a))(—6(a)+5—L G(@)d@)w( ())( [ia)a(@)deg)]ﬁ(o‘)

dr
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=[ (E(a))(fé)(l—G(e))de)+g(—€(oz))(—€(oz)+/5a)(1—G(5))d€2)]dgéf)

- [o(e(@) +a(-e@))] [ (1= Glena S,

where the last equality holds since —€ + f_i(l - G(€))de = f;(l - G(€))de by Claim Al.

Next, observe also that

arc do* de (a)

T = lerde@en - et} e G e [ elote(@) +cat-e(an)] T aF @)
= cf(0) S [ fg(e(e)) + co(-2(@)] D (o),
where the last equality holds since €(a*) =0 so G(€(a*)) = G(-¢(a*)) = G(0).
Therefore, after arranging terms, it follows that
dSWP _dMVP dTCP
dr dr  dr
fa* d%(a)ng( )+ / {Q(a)— —c[g(e(oz)) +cg(- E(Q))]d—(a)}dF(o‘)

+ f(a ) [ Q(a* )/ edG(e)+c]

adQ(Oé)
fa | Sedr(a),

where the last equality holds since

L@@ % - o) +eat-e(n] 52 ar(a)
- [T [e@ [ a-c@yde-c]oean® o)
+ [Mew@ (—e<a>+ i E(a)(l—a(e»de) ] at-etan G ar @) =0

by definition of €(«) (recall that —€ + [_(Sg(l -G(e))de = f;(l - G(e))de=c), and

dF(a)

Qo) [ e = Q%) [ (- Gle)de=c

by definition of a*. Next, observe that £ is increasing in «, since

ac [g(E(Oz) +g(_g(a))]f (1 G( ))ded_((j)
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and €(«) is increasing in «. Hence, we have

WO 7 d9t)

o T SdF(a)zm A “(a - E[a])dF(a) A “gar(a) 20,

where the first inequality follows from the fact that the covariance of increasing functions of

a random variable is positive, and the last inequality holds since

[T -Elal)ar(a) = [ adF(a)-Ela](1- F(a) = (1 - F(a")) (%@(? - ]E[a])

=(1-F(a"))(E[e|a > a*]-E[a]) > 0.

Thus, SWP increases with r. O |

B Three Colleges with A =0 in Remark 1.

Consider the case of three colleges with A = 0, that is, ¢; = ¢2 = g3 = ¢. In this setting, we
must have §; = §3 = §3 = § and we let Q(«a) := Prob(s > §|a).

To see students’ learning decisions, consider a student who has already learned both ¢;
and €;, with ¢ > ¢;. Note that the student’s learning decision in this stage is the same as
that under the baseline model since she only compares ¢; and €. Specifically, if she does
not learn €, then she will rank college ¢ highest if ¢; > 0, and otherwise prefer either j or k.
Her expected payoff in this case is u(e;a) = Q(a)(q+€;) if €, > 0, and u(e;; ) = Q(a)q if
€; < 0. Now, suppose she also learns ¢,. Then, she will rank ¢ above k if ¢; > ¢;, and k above

1 otherwise. Her expected payoff is then

u(exle; > €j;0) = Q(a){Prob(e; > €)(q + €;) + Prob(e; < e)E[q + exle; < €]}

~ Q(a) [q+e,.+f:(1—a(ek))dek] (B.1)

Thus, the gain from learning ¢ is

6 .
1-G d f i > 0
u(ek’|€i > E],O{) — u(eha) - ‘[ez( 5 (Ek)) € 1I €
€+ fﬁi(l - G(ep))dey, if € <0.

Using Claim A1 and the same logic as in the baseline model, we conclude that the student
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learns ¢ in addition to €; > ¢; if and only if |¢;| < €(a), where €(a) satisfies

Q(a)/f(l—G(e))de:c.

Next, consider a student who has learned ¢; and decides whether to learn ¢; alone or both

€; and €. We analyze the cases ¢; >0 and ¢; < 0 separately.

e Suppose €; > 0. If the student does not learn ¢; (and hence not ), her expected payoft
is u(e; > 0;0) = Q(a)(q +€;). If she learns ¢; only, she ranks college ¢ highest if €; > ¢,

and ranks j highest otherwise. Her expected payoff becomes
u(ejle; > 05 ) = Q(a){Prob(q >€;)(q+€) +Prob(e; <€;)E[q+¢€le < ej]}
5
-Q@)|a+e+ [ (1-Ge)de]

If she also learns ¢, she ranks the college with the highest €. So, her expected payoff

is
u(exles, €55 ) :Q(a){Prob(ei > ¢;)E[u(exle; > €j;a)] + Prob(e; < ¢;)E[u(ele; < €55 oz)]}

~Q@){g+as [ (-G,

where the last equality follows from substituting (B.1) into u(egle; > €;; ) and u(exle; <
€j;«) and rearranging terms. The gains from learning ¢; alone and from learning e

after ¢; are given by
5
ulejler 2 050) ~ue 2 0;0) = Q(a) [ (1-G(e))de,
5
u(erle, €55 ) —u(ejle > 0;a) = Q(w) fe (1-G(€;))G(€j)de;.

Define é(«) such that )
Q) [ (1-G(e)G(e;)de; = .

Observe that é(a) < €(«v), since otherwise

fE&(l—G(ei))dei:lé(l—G(ei))G(ei))dei<f:(l—G(ei))deigff(l—G(e,-)dei,

where the first equality follows the definitions of €(a)) and é(«). This yields a contra-
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diction. Hence, the value of learning €; given ¢; > 0 is

u(ejle; >0,a) —c  if ¢ > é(a),
max{u(ejle; 2 0; ) — ¢, u(egle;, €5; ) — 2¢} =
u(erle, €5;0) —2¢  if €; < é().

This exceeds u(e; > 0;«) if and only if ¢; < €(a), since é(a) < ().

e Suppose ¢; < 0. If the student does not learn ¢;, she ranks either college j or k above 1,
and her expected payoff is u(e; < 0;a) = Q(a)g. If she learns €; but not ¢, she ranks

college k highest if €; <0 and j highest if €; > 0. Her expected payoff is

u(ejle; < 0;a0) = Q(a){PrOb(ej <0)q+Prob(e; >0 > ¢)E[q + €jle; > 0]}
5
-Q@]o+ [ (1-Gle)de]

If she also learns €, she compares all three €’s, and her expected payoff is

w(exlen ;) = Q) [q fe+ f:u _ G(ejf))dej] .

The expected gains from learn €; alone and from learning €, after €; are respectively

)
u(ejlei < 0;a) —u(e < 0;a) =Q(a)f0 (1-G(e;))de; = (@),
weles c5:0) ~ e < 0:0) = Q) [er+ [ (1= GG~ |-Gl |

Note that the latter is increasing in e;,

dlu(exlei €; @) —u(elei < 0;a)]

de, = Q(a)[1-G(&) + G(&:)?] > 0,

and is negative at €; = 0: u(egle;, €5 0) —ulejle; = 0;0) = -Q(av) ]05(1 - G(€;))%dej < 0.

Therefore, the value of learning €; given ¢; <0 is
max{u(ejle; <0, ) —c,u(egle, €5;a) —2¢} = u(e;; 6, <0,a) —c,

so the student will learn ¢; if and only if ¢ <¢(«).

Lastly, we analyze students’ learning decisions at the beginning—that is, whether to

learn €; and subsequently €; and €. If the student does not at all, her expected payoff is
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Vo(a@) := Q(av)q. If she learns ¢; but not ¢; and ¢, then her expected payoft is

Ul(ei; ) = Q) {Prob(e; > 0)E[g + &;le; 2 0] + Prob(e; < 0)g} = Q(av) [q + f05(1 - G(ei))dei] ,
If she further learns ¢; but not €, her expected payoff is
U(es, e5300) = Q(){Prob(e; > 0)E[u(es]e; > 0; )] + Prob(e; < 0)Efu(e;le; < 0;0)]}
=Q(a) [q + f05(1 - G(ei)Q)dei] .

If the student learns all three €’s, her expected payoff is

5
Ulesesseai0) = Elutedes e:0)] = Q(a) g+ [ (1= Ge)?)G(e)der|.
Therefore, the value of learning is given by
V(a) :==max{U(e;a) —c,U(e;, €5;a) —2¢,U (€, €5, €55 ) — 3¢,

and the student will choose to learn ¢; if and only if V' (a) > Vo (a).

We define the following terms to capture the incremental gains from learning;:

0
U(es0) = Va(a) = Q(a) [ (1-G(9)de =7(a).
U e0) - Ulez0) = Q0) [ (1~ G0)G(e)de = (),
U(ei,€j,€x) —U(ei, €5;0) = Q(av) fod(l—G(e))(QG(e) - 1)de =: ¢(v).

To compute ¢(«), observe that

0 0
Ueisers) - Uleinesia) = Q) | [ (1-G@)G@de - [(1-Glep)ae]
al 0
-Q()| [ (-GG~ [ (1- ()1 - Gleyyie]
- 0 0
Q)| [Ta-a-cuHa-cm- [[1-G@)-Ge2)]

- Q(a) :f06(1 — G(6))(2G(c) - 1)de] 50,

where the last inequality holds since G(¢) > % for any € > 0 by the symmetry of G. It is easy
to see that ¢(«) < ¢(a) <¢(«r). Thus, the student will learn ¢; if and only if ¢ < ¢(«).
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C Additional Figures and Tables

BH: Conditional on being admitted by both DH
100 o....;o o Te L TL ]

S ] ° ® % ®
ZZ *° ‘: '.-"t “' ’ o
b

20 iy ..l. e ‘ﬁo..k ® 'c
SR
RIS, DRRN

& .o.‘ i ‘o. .?"..'.: o

Exam Score a
Exam Score a

@ None_None ®None_1 @ None_Both 1_None @1_2 @®Both_None @ None_None ®@None_1 ®None_Both 1_None ®1_2 ®@Both_None

m The label XY with XY € {None, 1,2, Both} indicates that an individual learned the gain(s) from
college(s) X in the pre-application stage and learned the gain(s) from college(s) Y in the post-admission

stage.

Figure C1: High Transparency Treatments — Outcome Comparison

BL: Conditional on being admitted by both DL

Exam Score a
Exam Score a

®None_None ®None_1 @ None_Both 1_None @1_2 @Both_None @ None_None @®None_1 ®None_Both 1_None @12 @Both_None

m The label XY with X,Y € {None, 1,2, Both} indicates that an individual learned the gain(s) from
college(s) X in the pre-application stage and learned the gain(s) from college(s) Y in the post-admission

stage.

Figure C2: Low Transparency Treatments — Outcome Comparison
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Learning G: in Treatment DH

Learning Gz in Treatment DL

100% 100%
M pre-admission Learning M Post-admission|Leaming M Total B Pre-admission Learning @ Post-admission Learning m Total
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60% 60%
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0% - 0%
[0,10) [10,20) [20,30) ([30,40) [40,50) ([50,60) [60,70) [70,80) [80,90) [90,100) [0,10)  [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
Exam Score (E) Exam Score (E)
Figure C3: Learning G; in Treatments DH and DL - Histogram
Learning G1 in Treatment BH (Admitted by Both) Learning Gz in Treatment BH (Admitted by One or None)
100% 100%
B Pre-admission Learning [ Post-admission Learning M Total
80% 80%
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Exam Score (E) Exam Score (E)
Figure C4: Learning GG; in Treatment BH - Histogram
Learning Gi in Treatment BL (Admitted by Both) Learning Gi in Treatment BL (Admitted by One or None)
100% 100%
B Pre-admission Learning [ Post-admission Learning M Total
M Pre-admission Learning [ Post-admission Learnin HETotal
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Exam Score (E)

Figure C5: Learning G; in Treatment BL - Histogram
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Figure C7: Learning G5 in Treatments BH and BL - Histogram
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Figure C8: Welfare Loss - Time Trend
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D Experimental Instructions

D.1 Treatment DH

Welcome to this experiment. Please read these instructions carefully. In the following one
and a half hours or so, you will participate in 30 rounds of decision making. The payment
you will receive from this experiment will depend on the decisions you make. The amount
you earn will be paid electronically via the HKUST Autopay System to the bank
account you provide to the Student Information System (SIS). The auto-payment
will be arranged by the Finance Office of HKUST, which takes about two weeks or more.
In this experiment, you are trying to enter a college. There are two colleges - College H
and College K. The admission decision is based on your exam score and interview score,

which will be further explained below.

Exam Score & Interview Score

At the beginning of each round, two scores will be generated for you according to the following

procedure.
1. Exam Score (E): Your exam score is randomly drawn from {0,1,2,...,99,100}.
Each integer between 0 and 100 is equally likely to be drawn for your exam score. Then
the exam score will be announced to you.
2. Interview Score (I): Your interview score is randomly drawn from {0,1,2,...,99,100}.

Each integer between 0 and 100 is equally likely to be drawn for your interview score.

Your interview score will not be revealed to you.

Note that the exam score and the interview score are independent with each other.
That is, having higher or lower exam score E does not tell you anything about your

interview score 1.

3. Total Score (T"): Your total score is calculated as follows.

Total Score (T') = 90% x E 4+ 10% x I

Admission Procedure in Each College

After your exam score (E) is revealed to you, you (without knowing the total score) first
need to decide if you want to send your application to College H, College K, or both colleges.

There is no application fee at all.
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Your application with your total score (7') is automatically sent to all college(s) you
applied. Among the college(s) you applied, you will be admitted by a college if your total

score (7') is higher than the following admission cutoff:

College H | College K
Admission Cutoff (Total Score) 35 23

You will then receive admission(s) from none, one, or both of Colleges H and K. If you
are admitted by only one college, you need to decide whether to pursue it or not. If you are
admitted by both colleges, you need to decide whether to pursue none of them, College H,
or College K.

Your Gain From College

Your gain from a college depends on how well the college suits you. More precisely,

e Your gain Gy (in tokens) from College H is randomly chosen between
{70,71,72,...,269,270}.
Each integer between 70 and 270 is equally likely to be drawn for your Gg. The gain
G'g becomes part of your earning if College H admits you and you decide to pursue it.
e Your gain Gk (in tokens) from College K is randomly chosen between
{50,51,52,...,249,250}.
Each integer between 50 and 250 is equally likely to be drawn for your Gx. The gain
Gk becomes part of your earning if College K admits you and you decide to pursue it.

Note that the gain G is college specific. That is, knowing G’y does not reveal anything about

Gk, and vice versa.

Your Learning Decisions

Gy and Gk are unknown to you at the beginning of each round, but you will have
opportunities to learn them. Learning incurs some costs to you.

Once each round begins, your decision screen always contains a panel that allows you to
learn what the exact gain from College H (i.e., the value of Gp) is. The panel is randomly
located either in the right half or in the left half of the screen. If you decide to learn it, you
need to pay 10 tokens at the end of the round. Then you further decide whether to learn
what the exact gain from College K (i.e., the value of G) is. If you decide to learn it, you

need to pay additional 10 tokens at the end of the round.
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Note that the options for you to learn G and G are always available in your decision

screen and thus the following decisions are completely up to you:
1. whether to learn none/one/both of Gy and G and

2. when to learn them. You can learn none/one/both of them before or after the

admission process begins or admission result is announced to you.

The learning cost you pay is constant at 10 tokens per college and does not depend on when

you learn G and/or G.

Your Earnings

Your earning in each round will be

Your Gain from Gollege — Cost of Learning You Paid, if you pursue a college,
Default Gain (50 tokens) — Cost of Learning You Paid, otherwise.

For example,

1. Suppose that you paid 10 tokens and learned that Gy = 150, but decided to not learn
Gk. You were admitted by College H and decided to pursue it. Your earning is 150
(Gain) - 10 (Cost of Learning) = 140.

2. Suppose that you paid 10 tokens and learned that Gy = 150. Then you further paid 10
tokens and learned that G = 170. It turned out that you were admitted by College
K and decided to pursue it. Your earning is 170 (Gain) - 20 (Cost of Learning) = 150.

3. Suppose that you paid 10 tokens and learned that Gz = 150, but decided to not learn
Gk. It turned out that you were admitted by College K and decided to pursue it. The
realized gain was Gk = 170. Your earning is 170 (Gain) - 10 (Cost of Learning) = 160.

4. Suppose that you paid 10 tokens and learned that Gz = 150. Then you further paid
10 tokens and learned that G = 170. It turned out that you were not admitted by
any college. Your earning is 50 (Default Gain) - 20 (Cost of Learning) = 30.

5. Suppose that you decided to not learn Gy nor Ggi. It turned out that you were
admitted by College K and decided to pursue it. The realized gain was G = 180.
Your earning is 180 (Gain) - 0 (Cost of Learning) = 180.
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Information Feedback

At the end of each round, the computer will provide you with some feedback, including
1) your exam score, 2) your interview score, 3) your total score, 4) which college(s) you
are admitted, 5) which college you pursue, 6) your learning decisions, 7) your Gy and Gy

(regardless of whether you paid to learn none, one, or both of them), and 8) your earning.

Your Payment

The computer randomly selects 1 round out of the 30 rounds to calculate your cash
payment. So it is in your best interest to take each round equally seriously. Your total
payment in HKD will be the number of tokens you earned in the selected round (1 token =
1 HKD) plus a HKD 40 show-up fee.

A Practice Round

To ensure your understanding of the instructions, you will participate in a practice round.
The practice round is part of the instructions and is not relevant to your cash payment. Its
objective is to get you familiar with the computer interface and the flow of the decisions in
each round. Once the practice round is over, the computer will tell you “The official rounds

begin now!”

Completion of the Experiment

After the 30th round, the experiment will be over. You will be instructed to fill in the
receipt for your payment. The amount you earn will be paid electronically via the HKUST
Autopay System to the bank account you provide to the Student Information System (SIS).
The auto-payment will be arranged by the Finance Office of HKUST.
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[Round 0]

College H | College K

Admission Cutoffs
(Total Score T)

35.0 23.0

Your Exam Score E:

79

Recall that your Total Score
T =0.9%E + 0.1xI (Interview Score)

To which college(s) do you want to send

your application?

College H| |College K| |Both

Your Gain from College H is randomly
drawn from the interval [70, 270].

| EEEEEE ) - -
0 70 270 300

Do you want to learn the exact Gain from
College H?

Pay 10 tokens and Learn it!

Your Gain from College K is randomly
drawn from the interval [50, 250].

I ---- esssssssss———] - -- -
0 50 250 300

Figure D1: Screen Shot - Learning Panel on the Right

[Round 0]

Your Gain from College H is randomly
drawn from the interval [70, 270].

| EEEEPE ) - -
0 70 270 300

Do you want to learn the exact Gain from
College H?

Pay 10 tokens and Learn it!

Your Gain from College K is randomly
drawn from the interval [50, 250].

| ---- eeeee————) - - - -
0 50 250 300

College H | College K

Admission Cutoffs
(Total Score T)

35.0 23.0

Your Exam Score E:

70

Recall that your Total Score
T =0.9%E + 0.1xI (Interview Score)

To which college(s) do you want to send

your application?

Both

College H

College K

Figure D2: Screen Shot -

Learning Panel on the Left
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D.2 Treatment CH

Welcome to this experiment. Please read these instructions carefully. In the following one
and a half hours or so, you will participate in 30 rounds of decision making. The payment
you will receive from this experiment will depend on the decisions you make. The amount
you earn will be paid electronically via the HKUST Autopay System to the bank
account you provide to the Student Information System (SIS). The auto-payment
will be arranged by the Finance Office of HKUST, which takes about three weeks.

In this experiment, you are trying to enter a college. There are two colleges - College
H and College K. They decide whether to admit you or not according to the following
centralized admission procedure. First, you need to indicate your top choice between
the two colleges to a central admission office. Second, the admission office makes admission
decisions based on 1) the submitted rankings, and 2) your exam scores and interview scores,

which will be further explained below.

Exam Score & Interview Score

At the beginning of each round, two scores will be generated for you according to the following

procedure.
1. Exam Score (E): Your exam score is randomly drawn from {0,1,2,...,99,100}.
Each integer between 0 and 100 is equally likely to be drawn for your exam score. Then
the exam score will be announced to you.
2. Interview Score (I): Your interview score is randomly drawn from {0,1,2,...,99,100}.

Each integer between 0 and 100 is equally likely to be drawn for your interview score.

Your interview score will not be revealed to you.

Note that the exam score and the interview score are independent with each other.
That is, having higher or lower exam score E does not tell you anything about your

interview score .

3. Total Score (T"): Your total score is calculated as follows.

Total Score (T') = 90% x E 4+ 10% x I

Admission Procedure via Central Admission Office

After your exam score (E) is revealed to you, you (without knowing the total score) are

asked to indicate your top choice between College H and College K as follows:

29



Please indicate your top choice:
College H College K

After you indicate your top choice, the admission procedure begins as follows:

1.

2.

7.

The admission office sends your application to the college of your top choice.

The college accepts your application if your total score (7') is above the following

admission cutoff, and reject otherwise:

College H | College K
Admission Cutoff (Total Score) 36.3 23

If your application is accepted by the college of your top choice, the admission process

is finalized.

Otherwise, the admission office sends your application to the college of your second

choice.

The college decides whether to accept your application based on your total score T'

and the admission cutoff.

If your application is accepted by the college of your second choice, the admission

process is finalized.

Otherwise, you are not admitted by any college and the process is finalized.

Note that the only thing you need to do is to indicate your top choice between Col-

lege H and College K. All the steps described above take place in the admission system

automatically, without any further inputs from you.

After the admission process is over, you will be informed whether you are admitted by

College H, College K, or none of them. In case that you are admitted by a college, you need

to decide whether to pursue the college or not.

Your Gain From College

Your gain from a college depends on how well the college suits you. More precisely,

e Your gain Gy (in tokens) from College H is randomly chosen between

{70,71,72,...,269,270}.

Each integer between 70 and 270 is equally likely to be drawn for your Gg. The gain

Gy becomes part of your earning if College H admits you and you decide to pursue it.
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e Your gain Gk (in tokens) from College K is randomly chosen between
{50,51,52,...,249,250}.
Each integer between 50 and 250 is equally likely to be drawn for your Gx. The gain
Gk becomes part of your earning if College K admits you and you decide to pursue it.

Note that the gain G is college specific. That is, knowing G’y does not reveal anything about

Gk, and vice versa.

Your Learning Decisions

Gy and Gk are unknown to you at the beginning of each round, but you will have
opportunities to learn them. Learning incurs some costs to you.

Once each round begins, your decision screen always contains a panel that allows you to
learn what the exact gain from College H (i.e., the value of Gg) is. The panel is randomly
located either in the left half or right half of the screen. If you decide to learn it, you need
to pay 10 tokens at the end of the round. Then you further decide whether to learn what
the exact gain from College K (i.e., the value of Gk) is. If you decide to learn it, you need
to pay additional 10 tokens at the end of the round.

Note that the options for you to learn Gy and G are always available in your decision

screen and thus the following decisions are completely up to you:
1. whether to learn none/one/both of G and G and

2. when to learn them. You can learn none/one/both of them before or after the

admission process begins or the admission result is announced to you.

The learning cost you pay is constant at 10 tokens per college and does not depend on when

you learn Gy and/or G.

Your Earnings

Your earning in each round will be

Your Gain from Gollege — Cost of Learning You Paid, if you pursue a college,
Default Gain (50 tokens) — Cost of Learning You Paid, otherwise.

For example,

1. Suppose that you paid 10 tokens and learned that Gy = 150, but decided to not learn
Gk. You were admitted by College H and decided to pursue it. Your earning is 150
(Gain) - 10 (Cost of Learning) = 140.
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2. Suppose that you paid 10 tokens and learned that Gy = 150. Then you further paid 10
tokens and learned that Gk = 170. It turned out that you were admitted by College
K and decided to pursue it. Your earning is 170 (Gain) - 20 (Cost of Learning) = 150.

3. Suppose that you paid 10 tokens and learned that Gy = 150, but decided to not learn
G k. It turned out that you were admitted by College K and decided to pursue it. The
realized gain was G = 170. Your earning is 170 (Gain) - 10 (Cost of Learning) = 160.

4. Suppose that you paid 10 tokens and learned that Gy = 150. Then you further paid
10 tokens and learned that Gk = 170. It turned out that you were not admitted by
any college. Your earning is 50 (Default Gain) - 20 (Cost of Learning) = 30.

5. Suppose that you decided to not learn Gy nor Gg. It turned out that you were
admitted by College K and decided to pursue it. The realized gain was Gx = 180.
Your earning is 180 (Gain) - 0 (Cost of Learning) = 180.

Information Feedback

At the end of each round, the computer will provide you with some feedback, including
1) your exam score, 2) your interview score, 3) your total score, 4) your top choice school,
5) which college you are admitted, 6) which college you pursue, 7) your learning decisions,
8) your Gy and G (regardless of whether you paid to learn none, one, or both of them),

and 9) your earning.

Your Payment

The computer randomly selects 1 round out of the 30 rounds to calculate your cash
payment. So it is in your best interest to take each round equally seriously. Your total
payment in HKD will be the number of tokens you earned in the selected round (1 token =
1 HKD) plus a HKD 40 show-up fee.

A Practice Round

To ensure your understanding of the instructions, you will participate in a practice round.
The practice round is part of the instructions and is not relevant to your cash payment. Its
objective is to get you familiar with the computer interface and the flow of the decisions in
each round. Once the practice round is over, the computer will tell you “The official rounds

begin now!”

Completion of the Experiment
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After the 30th round, the experiment will be over. You will be instructed to fill in the
receipt for your payment. The amount you earn will be paid electronically via the HKUST
Autopay System to the bank account you provide to the Student Information System (SIS).
The auto-payment will be arranged by the Finance Office of HKUST.

[Round 0]
College H | College K Your Gain from College H is randomly
Admission Cutoffs 163 23.0 drawn from the interval [70, 270].
(Total Score T) . ' | I ) - - -|

0 70 270 300
Your Exam Score E: .
Do you want to learn the exact Gain from

97 College H?

Recall that your Total Score Pay 10 tokens and Learn it!
T =0.9%E + 0.1xI (Interview Score)

Your Gain from College K is randomly

Please indicate your top choice. drawn from the interval [50, 250].
b —) - - -
College H| |College K o 50 250 300

Figure D3: Screen Shot - Learning Panel on the Right

[Round 0]
Your Gain from College H is randomly College H | College K
drawn from the interval [70, 270]. Admission Cutoffs 363 210
| T —— - - -| (Total Score T) . .
0 70 270 300

. Your Exam Score E:
Do you want to learn the exact Gain from

College H? 17

Pay 10 tokens and Learn it! Recall that your Total Score
T =0.9%E + 0.1xI (Interview Score)

Your Gain from College K is randomly

drawn from the interval [50, 250]. Please indicate your top choice.
}---- ) - - - - |
o %0 250 300 College H| |College K

Figure D4: Screen Shot - Learning Panel on the Left

33



	Introduction
	Theoretical Analysis
	Model
	Equilibrium Characterization
	Benchmark Admissions System and Welfare Analysis

	Experimental Design and Hypotheses
	Experimental Design and Procedure
	Experimental Hypotheses

	Experimental Results
	Learning of G1 and G2
	Welfare Analysis
	Non-equilibrium Learning and Welfare Decomposition

	Concluding Remarks
	Omitted Proofs
	Proof of analysis
	Proof of SW-comp

	Three Colleges with =0 in rem:many.
	Additional Figures and Tables
	Experimental Instructions
	Treatment DH
	Treatment CH


