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Abstract

We consider a model of oligopolistic competition in a market with search frictions, in

which competing �rms with products of unknown quality advertise how much information

a consumer’s visit will glean. We characterize the unique symmetric equilibrium of this game,

which, due to the countervailing incentives of attraction and persuasion, generates a payo�

function for each �rm that is linear in the �rm’s realized e�ective value. If the expected qual-

ity of the products is su�ciently high (or competition is su�ciently �erce), this corresponds

to full information–search frictions beget the �rst-best level of information provision. If not,

this corresponds to information dispersion–�rms randomize over signals. If the attraction in-

centive is absent (due to hidden information or costless search), �rms reveal less information

and information dispersion does not arise.
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1 Introduction

In many markets, consumers are unaware of essential aspects of the products available and can

only discover and learn about them by interacting with the items in some way. These interactions

are often costly for consumers: many goods require in-person encounters in order for important

information to be transmitted, and such visits are not free. Indeed, the feel of a rug or a car, the

�t of clothes or shoes, the sound of an instrument or speakers, the smell of perfume or wooden

furniture, or the taste of a food or beverage are all attributes fundamental to their respective

products that must be observed by the consumer, herself, in the �esh. While in-person inspections

are not necessary for products like online newspapers, music albums, (e-)books, and software,

consumers still need to expend costly time and e�ort to try free samples or conduct their own

research so as to discover pertinent information.

Firms often have a great deal of control as to how much information about their products

consumers’ inspections will bring. Car sellers choose whether to o�er test drives, software com-

panies decide the length of free trial periods and the set of speci�c functions to include in promo-

tional versions, newspapers limit how many free articles consumers can access, and book vendors

specify how many and which pages consumers may sample for free. In choosing how much infor-

mation to provide, a principal objective of each �rm is clearly persuasion: each wants consumers

to select its product over those of its competitors. On the other hand, because search is costly and

time-consuming, consumers are selective about which products to investigate. Another principal

objective is therefore attraction: each �rm wants consumers to consider it (visit it and inspect its

product) �rst.

In this paper, we investigate a series of fundamental questions: how are �rms’ information

provision policies shaped by market competition? How do search frictions a�ect the intensity

of competition? Would otherwise identical �rms adopt common or idiosyncratic information

policies? To answer these, we study a single-product oligopoly setting in which several �rms

compete by designing how much information a representative consumer obtains about their re-

spective products through her (costly) inspections. We abstract away from price competition and

focus on the information provision problem of the �rms.1

1This is justi�ed if the competing �rms are dealers in some product the price of which is set by a central o�ce.
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In our model, each ex-ante identical �rm has a product of uncertain quality, which is either

high or low.2 The quality distribution is independent and identically distributed across �rms,

with the probability of high quality denoted by �. Each �rm has complete freedom over how

much information about its product’s quality a consumer’s visit reveals: each �rm simultaneously

chooses and commits ex-ante to a signal or experiment, the outcome of which is revealed to the

consumer only upon visiting that �rm. These chosen signals are publicly posted and are observed

by the consumer prior to commencement of her search. The consumer needs at most one product.

Knowing only the collection of signals posted but not their realizations, the consumer decides

which �rms to visit and in what order, at a search cost of c > 0 per visit. As is standard in the

consumer search literature, we assume that the consumer must visit a �rm before she can buy

from it and that recall is free: having visited a �rm, the consumer may always return to select

that �rm’s product. Consequently, at each stage in her sequential search, the consumer has two

decisions to make: whether to stop (by selecting one product or the outside option) or continue,

and whom to visit next if she continues.

With the collection of signal distributions �xed, the optimal search strategy, characterized by

Weitzman (1979), takes a simple form. Given its choice of signal, each �rm is assigned a reserva-

tion value characteristic to that �rm. The consumer inspects the �rms’ products in descending

order of their reservation values. If, at any time, the consumer �nds a product that has a posterior

expected quality exceeding the highest reservation value of the remaining �rms, the consumer

stops her search and selects the best product discovered thus far.3

As hinted above, there is an important tension present in the model, which drives our results.

Namely, when choosing its signal, a �rm trades o� between persuasion and attraction. Conditional

on the consumer visiting, a �rm wishes to maximize the chance that it is selected. To this end,

all beliefs above the �rm’s reservation value are equivalent, since all lead the consumer to stop

and select that �rm. Thus, the persuasion incentive encourages pooling of beliefs above the

Such �rms can control the level of information that they provide but not the price.
2Alternatively, this quality can be interpreted as the consumer’s match value with the product. We use quality

throughout in order to easily di�erentiate between it and the reservation value assigned to the �rm in the consumer’s

search problem.
3Our model extends Weitzman (1979) by endogenizing the collection of prize distributions from which the con-

sumer samples.
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stopping threshold, as �rms try to maximize the conversion rate from visits to purchases. On the

other hand, the reservation value rewards informativeness–the more information a �rm provides,

the higher its reservation value and the earlier it is visited in the consumer’s search. Ceteris

paribus, the earlier a �rm is visited, the better for the �rm, since ranking lower in the search

order implies a greater chance that the consumer stops elsewhere before visiting it. In contrast to

the persuasion incentive, the attraction incentive encourages the spreading of beliefs, in order to

entice the consumer to visit. While the attraction motive encourages more informative signals,

the persuasion motive calls for less. A �rm’s optimal signal is determined by the interplay of

these two forces.

We �nd that when the average quality, �, of the products is su�ciently high, the attraction

motive dominates, and the unique symmetric equilibrium is one in which each �rm chooses a

fully informative signal. There is no pro�table deviation from full information, as any other

signal would ensure that the deviating �rm be visited last, a rare event due to the surfeit of high

quality products in the market. Conversely, if � is not high, we �nd that there are no symmetric

equilibria in pure strategies. Because the average quality is low, the persuasion motive is more

important. A �rm can deviate pro�tably from providing full information by being uninformative:

even though it will be visited last–indeed, it will only be visited if every other �rm is low quality–

it will be selected for certain if visited. Nevertheless, the attraction incentive still remains and

precludes the existence of any other symmetric pure strategy equilibrium, as �rms can always

deviate pro�tably by providing slightly more information and moving to the top of the consumer’s

search order.

In order to characterize the unique symmetric equilibrium outside of the high average quality

case, we use recent results from Armstrong (2017) and Choi et al. (2018), who show how the

sequential problem of Weitzman (1979) can be reformulated as a static discrete choice problem

in which the consumer selects the �rm with the highest realized e�ective value. Adapting the

concavi�cation method of Kamenica and Gentzkow (2011) to this setting, we establish that there

is a unique symmetric equilibrium distribution over e�ective values, which necessarily begets a

payo� function for each �rm that is linear in the �rm’s realized e�ective value. Importantly, this

distribution requires �rms to randomize over their choices of signals, i.e., our model generates
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information dispersion.4 In equilibrium, each �rm mixes over a continuum of information levels,

with no atoms except possibly on the fully informative signal, which arises when � is not too low.

Our prediction of information dispersion is novel and suggests potentially pro�table avenues

for empirical study. For instance, in the market for antivirus/security software, all of the major

companies o�er potential consumers free trials, but di�er in the length of these previews: 7 days

for AVG and Avast, 14 days for MalwareBytes, and 30 days for Norton, McAfee and Kaspersky.

Similarly, there is variation in the length of free trial periods o�ered by music streaming services:

1 month for Google Play Music and Tidal, 2 months for Pandora, and 3 months for Spotify and

Apple Music. The market for grammar checking software features not only di�erent free-trial

periods, but also di�erent functionalities (including word limits and style settings) in �rms’ trial

o�ers.

To highlight the signi�cance of the attraction motive in driving our results, we also investigate

two benchmarks in which only the persuasion incentive is present, albeit for di�erent reasons. In

Section 5.1, we explore the case in which the consumer is able to observe the signal realizations of

all of the �rms for free (corresponding to setting c = 0 in our main model). In the absence of the

attraction motive, �rms have less incentive to provide information; and in the unique symmetric

equilibrium, �rms do not provide full information. Consequently, our results imply that when it

is important to be visited early (� is high), the consumer can actually bene�t from having a small

positive search cost c > 0, which engenders the attraction incentive.

In Section 5.2, we consider another benchmark in which the consumer can observe a �rm’s

choice of signal only after paying it a visit. When information is hidden in this manner, the

attraction motive is completely absent, and we point out a dramatic “informational Diamond

paradox.” Namely, the only equilibrium outcome is that �rms provide no useful information and

the consumer does not actively search. Deviations to other signals cannot be observed in advance

and so the consumer’s search order is determined entirely by her conjectures and not the actual

signals. The pooling incentive is all that remains, which eliminates any purported equilibria with
4Note that by information dispersion, we mean the informational analog of price dispersion. This refers to the

variation in levels of information provision among identical �rms in the same market. This is di�erent in nature from

that cited in Marquez (2002), which refers to the increase in fragmentation of the borrower-speci�c information held

by lenders as the number of competing lenders increases.
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active search. Again, there is no information dispersion as all �rms provide the monopoly level

of information.

For tractability, our main model assumes ex-ante homogeneous �rms, so it is natural to focus

on symmetric equilibria. For simplicity, we also assume the consumer’s outside option is so low

that it is irrelevant. In Section 6, we explore the consequences of relaxing these restrictions.

In Section 6.1, we illustrate that asymmetric equilibria are possible in some parameter regions.

In Section 6.2, we analyze the competition between two asymmetric �rms. In Section 6.3, we

show that the introduction of a non-negligible outside option leaves the qualitative features of

the equilibrium intact, and this modi�cation allows us to investigate comparative statics results

on �rm pro�t.

This section concludes with a brief discussion of related work. The model is set up in Section

2. Section 3 reports some preliminary observations and explains how the game under study can

be reformulated into a more tractable one. Results on equilibrium existence, uniqueness and

characterization are detailed in Section 4. Section 5 illustrates the major economic forces at work

by considering two benchmark models. A number of extensions are considered in Section 6.

Section 7 concludes with some discussion of our results. All proofs are left to the appendices,

unless stated otherwise.

1.1 Related Work

There are still relatively few papers that explore information design in search settings. One such

paper is Board and Lu (2018). They also consider a setting in which sellers compete by designing

experiments, and buyers search sequentially to learn about their products. In contrast to our

paper, the sellers’ experiments are not publicly posted and hence do not direct the buyers’ search.

The tension between attraction and persuasion, vital to our model, is absent from their setup.

In addition, they assume that the state of the world upon which the buyers’ utilities depend is

common; whereas in our model, the information produced by each �rm provides the consumer

with no information about any of the other �rms.

Board and Lu (2018) show that under certain conditions, the monopoly (no active search)

outcome is a unique equilibrium. The intuition behind their result is similar to our �nding in

the hidden information setup–there is a strong incentive for �rms to pool information just above

6



a consumer’s stopping threshold. Whitmeyer (2020) enriches the hidden information setting of

this paper by allowing �rms to set prices as well, and �nds that regardless of whether prices are

hidden or posted, the no active search result persists. Whether prices are posted does, however,

a�ect consumer welfare: posted prices beget pricing at marginal cost whereas hidden prices lead

to monopoly pricing.

Dogan and Hu (2018) explore consumer-optimal information structures in the sequential

(undirected) search framework of Wolinsky (1986). They �nd that consumer welfare is maxi-

mized by a signal that generates a (conditional) unit-elastic demand. The optimality of a signal

that generates unit-elastic demand is also true in Choi et al. (2019), who look at consumer-optimal

signals in a monopoly problem for search goods (where, in contrast to this paper, true values are

apparent upon inspection instead of through consumption). These results are closely related

to those of Roesler and Szentes (2017), Condorelli and Szentes (2020), and Yang (2019), who all

establish that truncated Pareto distributions over valuations–which correspond to unit-elastic

demand–are optimal for consumers in variants of a bilateral trade setting.

There are also several papers that explore competition through information provision when

there are no search frictions (c = 0). The unique equilibrium in Spiegler (2006) is essentially

isomorphic to the speci�c case in the frictionless model when the mean is �xed at 1/2. Boleslavsky

and Cotton (2015) and Albrecht (2017) both derive results that characterize the the two-player

solution to this problem of frictionless competitive information provision. Whitmeyer (2018)

looks at a dynamic version of the two-player game, and Au and Kawai (2019) modify the two-

player scenario to allow for arbitrary correlation between the senders’ qualities. Special mention

is due to Au and Kawai (2020), who establish the unique (symmetric) equilibrium for the n-player

game. These results were derived independently in an earlier version of this paper, using di�erent

techniques. Koessler et al. (2017) look at a general setting in which multiple persuaders provide

information about their own dimension of some multidimensional state.

A natural point of comparison for this paper is the collection of papers that explore price-

directed search. One important early foray in the area is Armstrong and Zhou (2011), who allow

�rms to post prices in a modi�ed Hotelling environment with search frictions. A subsequent ma-

jor contribution is Choi et al. (2018), who incorporate (posted) price competition into a model of

Weitzman search. With advertised prices, both papers �nd that as search costs increase, prices de-
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crease and consumer surplus may thus increase. This relationship is also uncovered by Ding and

Zhang (2018), who add product di�erentiation and posted prices to the setting of Stahl (1989); and

by Haan et al. (2018), who allow for both posted prices and (publicly) observable product charac-

teristics. Armstrong (2017) also discusses the same pattern in his overview on price competition

in an ordered consumer search setting.

In each such paper on price-directed consumer search, there is a tension inherent to �rms’

pricing decisions. Setting a lower price makes a �rm more likely to be visited early as well as

make a sale if visited, yet obviously lowers the �rm’s pro�t directly. As search frictions increase,

it becomes more important to attract (and retain) consumers, which drives prices down. At �rst

glance, this trade-o� seems like a direct analog of the persuasion/attraction con�ict in this paper.

However, there are important di�erences. In particular, note that lowered prices help with both

persuasion and attraction–consumers are both more likely to visit and to stop as a �rm lowers

its price. The idea that �rms can increase the chance of being selected if visited, at the expense of

being visited in the �rst place, is completely absent from this literature that focuses on pricing;

yet is the driving feature in our model. To put di�erently, in both price and information-directed

competition in consumer search, the incentive to be visited early is fundamental, yet the costs of

such prominence are di�erent.

The vein of research that focuses on obfuscation is also relevant. Two such papers are Ellison

and Wolitzky (2012) and Ellison and Ellison (2009). In the �rst, the authors extend the model

of Stahl (1989) by allowing �rms to choose the length of time it takes for consumers to learn

its price. Allowing for such delays hurts consumers, since obfuscation leads to longer search

times and higher prices. Ellison and Ellison (2009), in turn, provide empirical evidence suggesting

that as technology has made price search easier for consumers, �rms have responded by taking

actions that make price search more di�cult. More recently, Gamp and Krähmer (2017) examine

a scenario in which sellers can dupe naive consumers into buying products that are lemons.

As in this model (though through a di�erent mechanism), search frictions can be bene�cial to

consumers.

Finally, just as search frictions can improve consumer welfare (when prices are posted), so too

can other types of frictions, which has been observed by some papers from the rational inatten-

tion literature. The forces driving these results are quite di�erent than the attraction/persuasion
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trade-o� that we explore here. De Clippel et al. (2014) look at a model in which consumers have

demand for multiple goods, but can only compare prices for a fraction of them. Consumers have

a default seller (the market leader) for each good and for each can choose whether to explore the

market further and compare prices to a competitor or simply purchase from the leader. Because

consumers can only explore the markets for a subset of goods, there is an incentive for leaders to

lower prices and therefore stay “under consumers’ radar.” In contrast, �rms in our setting compete

to get “on consumers’ radar.” In a bargaining scenario in which the buyer is rationally inattentive,

Ravid (2020) �nds that attention costs strictly bene�t a buyer, who obtains bargaining power as a

result of his inattention. Conversely, our �nding that the consumer may bene�t from a positive

search cost hinges crucially on market competition. If there is a single �rm in our setting, search

frictions do not bene�t the consumer.

2 The Model

There are n + 1 players: one consumer, C , and n ex-ante identical single-product �rms indexed

by i. Each �rm’s product has a random quality (or match value) to the consumer of either 0 or

1. These qualities are identically and independently distributed, with � ∈ (0, 1) being the prior

probability that the quality realization is 1. The consumer needs at most one unit of the good,

and her ex-post payo� of consumption is normalized to the quality of the product consumed. For

simplicity, we assume that the consumer has an outside option with a value no larger than 0.5

A �rm receives a payo� normalized to 1 if the consumer picks its product, and 0 otherwise. All

players are expected-payo� maximizers.

At the beginning of the game, neither the consumer nor the �rms know the quality realiza-

tions of their products. Each �rm simultaneously commits to a signal, which is a measurable

function �i ∶
{
0, 1

}
→ Δ(S) with some space of signal realizations S. The primary focus of this

paper is the scenario in which the chosen signals are publicly posted, and therefore shape the

consumer’s behavior directly.6

5In Section 6.3, we show that our �ndings continue to hold when this assumption is relaxed.
6In Section 5.2 we study a setting in which the chosen signals are hidden, and can only be observed after incurring

the search cost. Naturally, in this case, the consumer conjectures �rms’ signal choices, which must be correct at

equilibrium.
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Guided by the informativeness of the posted signals, the consumer learns about the �rms’

product qualities by visiting the �rms and observing their signal realizations in sequence. Each

such inspection requires a search cost of c > 0. After observing the signal realization of a �rm,

the consumer updates her prior to the posterior expected quality of the product o�ered by that

�rm. At any stage of her sequential search, the consumer can stop her search by buying from any

previously visited �rm; recall is assumed to be free. Alternatively, she can continue her search

by visiting more �rms or stop her search by collecting the outside option. To avoid trivial cases,

we assume throughout that c ≤ �, so that search is not strictly dominated for the consumer.

The solution concept used is subgame-perfect Nash equilibrium. Given the ex-ante symmetry

of the �rms, it is natural to focus on symmetric equilibria in which (i) all �rms adopt a common

(possibly mixed) strategy, and (ii) the consumer adopts a tie-breaking rule that treats all �rms

identically.

3 Preliminary Analysis

The purpose of this section is to simplify the game set up in the last section, and we proceed

through a number of steps. First, we note that a �rm’s strategy space can be expressed as the set of

distributions over posterior qualities and that the consumer’s sequentially optimal search strategy

takes a simple form. Second, we explain the necessity of considering mixed strategies by noting

that there are no pure-strategy equilibria in a large region of the parameter universe. Finally,

using the fact that the consumer’s decision can be expressed as a static discrete choice problem,

we show how the strategic interaction between the �rms can be condensed and simpli�ed.

3.1 Basics

This subsection reformulates the game set up in Section 2 into one of competition in the design

of distributions over posteriors. Instead of choosing signals directly, the strategy space of each

�rm can be rede�ned without loss to be the set of feasible distributions over posterior (expected)

qualities. To that end, we introduce the following de�nition.

De�nition 3.1. A distribution over posteriors, F , is Feasible if it has mean � and its support is
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a subset of [0, 1]. M[0,1] (�) denotes the set of feasible distributions.7

As a signal realization a�ects payo�s only through its implied (posterior) expected prod-

uct quality, it is a standard result in the literature that we may de�ne a �rm’s pure strategy

to be a feasible distribution over posterior qualities. Consequently, a generic mixed strategy of

a �rm is a randomization over the set of feasible distributions, and the set of mixed strategies is

Δ (M[0,1] (�)). Note that if a �rm plays a mixed strategy, its pure strategy realization occurs and

becomes public before the consumer begins her search.

Next, given the n posted distributions over posterior qualities, the sequentially optimal se-

lection and stopping rule has been identi�ed by Weitzman (1979). A brief recap of his �nding

is useful. For any distribution Fi chosen by Firm i, de�ne the corresponding reservation value,

U (Fi), implicitly as the solution to the following equation (in u):

c = ∫
1

u
(x − u) dFi (x) . (1)

The set of feasible reservation values {U (F )}F∈M[0,1](�) is bounded between
̄
U ≡ �−c and Ū ≡ 1−c/�.

The lower bound is induced by any feasible distribution whose support is entirely (weakly) above

� − c, one of which is the degenerate distribution at � (which corresponds to a completely unin-

formative signal). The upper bound is uniquely induced by the feasible distribution supported on

{0, 1} (which corresponds to a fully revealing signal). It is not di�cult to see that any intermedi-

ate reservation value can be achieved by some feasible distribution, so {U (F )}F∈M[0,1](�) = [ ̄
U , Ū ].8

Moreover, the reservation value rewards informativeness: for any pair of feasible distributions F

and G, if F is a mean-preserving contraction of G, then U (G) ≥ U (F ).

The optimal strategy of the consumer (a.k.a. Pandora’s rule) is as follows.

• Selection rule: If a �rm is to be visited and examined, it should be the unvisited �rm with

the highest reservation value.

• Stopping rule: Search should be stopped whenever the maximum reservation value of the

unvisited �rms is lower than the maximum sampled reward or the outside option.
7In general, beyond the binary prior case that we explore in this paper, the set of feasible distributions is the set

of all mean-preserving contractions of the prior distribution.
8For instance, by some convex combination of the two distributions above.
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As we focus on symmetric equilibria, we select the (sequentially) optimal strategy in which

the consumer adopts a fair tie-breaking rule throughout the search process. With the consumer’s

search behavior pinned down, we can restrict our attention to the strategic interaction between

the �rms in our subsequent analysis.

3.2 The Full Information Equilibrium

This subsection focuses on pure-strategy equilibria and identi�es the conditions under which one

exists as well as the form it takes. We begin with a simple observation:

Lemma 3.2. There exist no symmetric pure strategy equilibria in which any reservation value U <

Ū is induced.

The intuition mirrors that of the Bertrand model of homogeneous goods in which pricing

above marginal cost cannot be sustained in equilibrium. Just as a �rm can “undercut” its rivals’

marked-up price to obtain a discrete jump up in its demand; here, a �rm can provide slightly more

information than its rivals’ partial revelation.9 Doing so grants the �rm a considerable edge on its

competition (since it will move to the top of the consumer’s search order), at a negligible loss of

persuasion e�ectiveness. This results in a discrete gain in expected pro�t, so a symmetric partial-

information equilibrium cannot be sustained. This leaves full information as the only candidate

pure-strategy equilibrium.

Proposition 3.3. De�ne �̄ ≡ 1 − ( 1n)
1
n−1 . A symmetric equilibrium in pure strategies exists if and

only if � ≥ �̄; i.e., the average quality, �, is su�ciently high or the number of �rms, n, is su�ciently

large. In this equilibrium, all �rms provide full information.

This proposition details precisely the conditions under which the attraction incentive dom-

inates the persuasion incentive for the �rms. A high � implies persuasion is likely to succeed,

making it paramount for a �rm to entice the consumer into visiting it–a failure to do so means

the consumer is likely to stop her search at one of a �rm’s rivals before ever reaching it. A similar
9More speci�cally, suppose all �rms but Firm i adopt a common strategy, F , withU (F ) < Ū . A pro�table deviation

for Firm i is to modify F by increasing the probability of values 0 and 1 by an arbitrarily small amount and decreasing

the probability of a commensurate measure of interior values.
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e�ect is at work if the number of rival �rms is large–a low rank in the consumer’s search order

means a �rm is unlikely to ever be visited, let alone make a sale. Consequently, in these cases,

the attraction incentive dominates. If rival �rms are expected to reveal full information, any de-

parture from it guarantees the deviator the bottom rank in the consumer’s search order. With a

high average quality and/or large number of competitors, the likelihood that the consumer ever

visits that �rm is too low for the deviation to be pro�table, and the full-information equilibrium

can be supported.

The relative importance of attraction in relation to persuasion is smaller if � and/or n is rela-

tively low. Even if all of its rivals provide full information, an individual �rm may �nd it pro�table

to provide less information: despite being ranked last, the �rm still has a decent chance of eventu-

ally being visited. In this case, the attraction motive no longer dominates, and both the attraction

and persuasion roles of signals play a part in shaping the equilibrium outcome. By Lemma 3.2, the

equilibrium, if it exists, necessarily involves mixed strategies, making its characterization more

involved. In the next subsection, we make use of the remarkable discovery of Choi et al. (2018)

and Armstrong (2017), who show that the consumer’s sequential search can be formulated as a

(static) discrete choice problem, which enables us to characterize and establish the uniqueness of

the symmetric equilibrium in mixed strategies in a tractable way.10

3.3 Reformulating the Game and Main Analysis

Using the observation that the consumer’s optimal shopping strategy a�ects �rms’ payo�s only

through her eventual purchase decision (rather than the details of the exact search paths), the

strategic interaction between �rms can be modelled as the competition over the realizations of

e�ective values. The E�ective Value of Firm i is de�ned as Wi ≡ min {pi , U (Fi)}, where pi is

the realized posterior quality, and Fi is the distribution over posteriors chosen by Firm i. After

distribution Fi is chosen, but before the posterior realizes, Firm i’s e�ective value, Wi , is a random
10As it turns out, the full disclosure equilibrium exposed in this subsection corresponds to a special case of a

more general result that we derive in the next section. The main result there, Proposition 4.5, establishes that the

(essentially) unique equilibrium of the game (for all parameter values) must take a particular linear form, of which

the full disclosure equilibrium serves as avatar when � is su�ciently high.
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variable with distribution

H (w; Fi) ≡
⎧⎪⎪
⎨⎪⎪⎩

Fi (w) if w < U (Fi)

1 if w ≥ U (Fi)
. (2)

As shown in Choi et al. (2018), the consumer eventually purchases from the �rm with the highest

e�ective value realization, provided that it is no less than her outside option. Therefore, a �rm’s

problem can be stated as choosing an e�ective-value distribution that maximizes the probability

of realizing the highest e�ective value among all of the competing �rms (including the consumer’s

outside option).

This begs the question, what distributions over e�ective values can a �rm induce? Each mixed

strategy � ∈ Δ (M[0,1] (�)) of a �rm induces a distribution G� over reservation values by G� (w) ≡

� ({F ∶ U (F ) ≤ w}). For any reservation valueU ′ in the support ofG� , there is a pro�le of feasible

distributions over posteriors that attain this reservation value {F ∈ supp (� ) ∶ U (F ) = U ′} in the

support of � . Denote by F�,U the implied distribution over posteriors conditional on the realization

of reservation value U under the mixed strategy � . It is without loss to replace the pro�le of

feasible distributions above with F�,U in the mixed strategy � , as doing so leaves the induced

distribution over e�ective values una�ected. Consequently, a generic mixed strategy takes the

form (G (⋅) , {FU (⋅)}U∈supp(G)), for some reservation-value distributionG and a feasible distribution

over posteriors FU (⋅) that attains each U ∈ supp (G). With this convention of representing a

mixed strategy, the e�ective-value distribution induced by Firm i’s mixed strategy is given by

Hi (w) ≡ Pr (min {pi , U (Fi)} ≤ w)

= Pr (U (Fi) ≤ w) + Pr (pi ≤ w < U (Fi))

= G (w) + ∫
Ū

w
Fs (w) dG (s) . (3)

Armed with this, we introduce another de�nition.

De�nition 3.4. A distribution over posterior e�ective values, Hi , is Inducible if there exists a

mixed strategy (G (⋅) , {FU (⋅)}U∈supp(G)) such that Equation (3) holds. I[0,1−c/�] (� − c) denotes the

set of inducible distributions of e�ective values.

The following observation may be obvious, yet deserves to be stated for clarity.
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Remark 3.5. Let P[0,1−c/�] (� − c) denote the set of distributions over e�ective values that can

be induced by a deterministic choice of feasible distribution F ; that is, that can be induced by a

�rm’s pure strategy. Then there are distributions over e�ective values supported on [0, 1 − c/�]

with mean �−c that cannot be induced; and there are inducible distributions over e�ective values

that cannot be induced by pure strategies. In notation,

P[0,1−c/�] (� − c) ⊂ I[0,1−c/�] (� − c) ⊂ M[0,1−c/�] (� − c) .

We should take two things from this remark. First, although it is tempting, we may not treat

a �rm’s problem as a standard persuasion problem in which it just chooses a Bayes-plausible

distribution over e�ective values, as the optimal distribution from the set M[0,1−c/�] (� − c) may

not be inducible. Indeed, as we will see in the next subsection, this inducibility restriction does

have bite, at least in some parameter con�gurations. Second, the remark illustrates that equilibria

may require �rms to mix over feasible distributions of posteriors. Again, we will discover in the

next section that for some parameter values, this is necessary in a symmetric equilibrium.

Proof. The weak inclusion of these sets is trivial and a pair of examples su�ces to show that the

inclusion is strict. As noted above, the maximal reservation value 1 − c/� is uniquely induced by

the Bernoulli distribution. Let Sp denote the following (parameterized) binary distribution over

e�ective values:

Sp =
⎧⎪⎪
⎨⎪⎪⎩

(�−c)(�−p)
�(1−p) 1 − c

�

1 − p p

⎫⎪⎪
⎬⎪⎪⎭
,

where the top row is the support of the distribution and the bottom row the associated probability

weights (the pmf). Evidently, Sp ∈ M[0,1−c/�] (� − c) for any p ∈ [0, �]; whereas Sp ∉ I[0,1−c/�] (� − c)

for all p ≠ �.

Next, let P and Q be the following two binary distributions over e�ective values (with � = 1/2

and c = 1/8):

P =
⎧⎪⎪
⎨⎪⎪⎩

1
4

1
2

1
2

1
2

⎫⎪⎪
⎬⎪⎪⎭
, and Q =

⎧⎪⎪
⎨⎪⎪⎩

1
4

15
24

2
3

1
3

⎫⎪⎪
⎬⎪⎪⎭
.

Clearly, both P, Q ∈ P[0,1−c/�] (� − c). The following ternary distribution over e�ective values, R,

can be induced by randomizing fairly between P and Q.

R =
⎧⎪⎪
⎨⎪⎪⎩

1
4

1
2

15
24

7
12

1
4

1
6

⎫⎪⎪
⎬⎪⎪⎭
.
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Thus, by construction R ∈ I[0,1−c/�] (� − c). However, the unique pure strategy distribution over

values that induces R is

R′ =
⎧⎪⎪
⎨⎪⎪⎩

1
4

1
2

11
8

7
12

1
4

1
6

⎫⎪⎪
⎬⎪⎪⎭
,

which is infeasible. Accordingly, R ∉ P[0,1−c/�] (� − c). ■

The following property of inducible e�ective-value distributions follows from the de�nitions

of the reservation-value equation (1) and the e�ective-value distribution (2), and is useful in our

subsequent analysis.

Lemma 3.6. Let F be a distribution over posteriors with mean � and reservation value U . Its induced

e�ective-value distribution has mean
̄
U = � − c. Moreover, the expected e�ective value conditional

on falling short of U lies in the interval [0, ā (U )], where ā (U ) ≡ �−c−�U
1−c−U .

The preliminary analysis above explains how our game can be cast as competition over in-

ducible e�ective-value distributions. The optimization program over inducible e�ective-value

distributions will therefore play a crucial role in the equilibrium analysis. The next subsection

proposes a graphical solution to this problem.

3.3.1 Finding the Optimal Inducible E�ective-Value Distribution by Concavi�cation

In this subsection, we show how the concavi�cation approach by Kamenica and Gentzkow (2011)

can be adapted to a �rm’s problem of �nding the optimal inducible11 e�ective-value distribution.

We focus temporarily in this subsection on the optimization problem of a single �rm whose payo�

as a function of its realized e�ective value is Π ∶ [0, Ū ] → ℝ.

The optimal e�ective-value distribution can be found in two steps. We �rst identify the op-

timal e�ective-value distribution for each implied reservation value U ∈ [ ̄
U , Ū ]. The overall

optimum can then be found by comparing the expected payo�s for each reservation value.

For each reservation value U ∈ [ ̄
U , Ū ], denote by ΠU ∶ [0, U ] → ℝ the restriction of Π

to the domain [0, U ], and denote by Π̂U ∶ [0, U ] → ℝ the concave closure of ΠU . The opti-

mal e�ective-value distribution conditional on reservation value U can be found by solving the
11Henceforth, to save space we omit this modi�er.
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Figure 1: An illustration of Π; its restriction to [0, U ], ΠU ; and the concave closure of ΠU , Π̂U .

following problem:

V (U ) ≡ max
a∈[0,ā(U )]

Π (U ) −
Π (U ) − Π̂U (a)

U − a
[U −

̄
U ] , (4)

where ā (⋅) is de�ned in Lemma 3.6. The intuition is as follows. Observe that a distribution over

posteriors may be decomposed into the following three components: (i) a conditional distribution

over [U , 1], (ii) a conditional distribution over [0, U ], and (iii) the relative weight over these two

regions of posteriors. As component (i) has no impact on the e�ective-value distribution and

hence the �rm’s payo�, it su�ces to focus on the choices of the latter two components.

The optimal choice of component (ii) can be characterized by the concavi�cation approach

of Kamenica and Gentzkow (2011): the optimal conditional distribution over [0, U ] can be found

by identifying the concave closure Π̂U of the payo� function restricted to the domain [0, U ].

Evidently, if it has a conditional mean a ∈ [0, ā (U )], then the maximized conditional payo� is

Π̂U (a). Component (iii), the relative weight over the upper and the lower posterior regions, is

uniquely pinned down by the choice of a ∈ [0, ā (U )] and the reservation-value equation (1).

Speci�cally, if F is a feasible distribution over posteriors with reservation value U and a mean a
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conditional on the posterior falling short of U , it is necessary that F (U ) = (U −
̄
U ) / (U − a).12

Using the observations above, the optimal e�ective-value distribution can be found by choos-

ing the conditional mean a ∈ [0, ā (U )] to maximize

Π̂U (a) × F (U ) + Π (U ) × (1 − F (U )) = Π̂U (a) ×
U −

̄
U

U − a
+ Π (U ) × ̄

U − a
U − a

. (5)

This problem is equivalent to that of (4). A graphical illustration is shown in Figure 1.

Having identi�ed the optimal e�ective-value distribution for each reservation value, the over-

all optimum can be found by optimizing V (U ) over U ∈ [ ̄
U , Ū ].13 The following proposition

summarizes the graphical approach for e�ective-value distribution optimization discussed above.

Proposition 3.7. The �rm’s maximized payo� is given by maxU∈[ ̄U ,Ū]
V (U ). Moreover, suppose

U ∗ ∈ [ ̄
U , Ū ] maximizes V (⋅) and a∗ ∈ [0, ā (U ∗)] maximizes Π (U ∗) − Π(U ∗)−Π̂U ∗ (a)

U ∗−a (U ∗ −
̄
U ). An

optimal e�ective-value distribution has a mass of ̄
U−a∗

U ∗−a∗ assigned to
(�−a∗)U−ca∗

̄
U−a∗ (which is above U ∗) and

the residual mass U ∗−(�−c)
U ∗−a∗ assigned to values below U ∗ according to the construction of the concave

closure Π̂U ∗ at a∗.

4 The Symmetric Equilibrium in Competition over E�ec-

tive Values

In this section, we explicitly characterize the symmetric equilibrium by analyzing the game

of e�ective-value competition set up in the previous section. We show that the symmetric-

equilibrium distribution of e�ective values is necessarily unique, and implies a speci�c linear
12To see this, note that the reservation-value equation (1) implies that the expected value conditional on exceeding

U is ∫ 1U xdF (x) / [1 − F (U )] = U + c/ [1 − F (U )]. The conditional means below and above U , together with the

feasibility requirement that the unconditional mean equals �, then fully determine the relative weights over the two

posterior regions as follows:

a × F (U ) +(U +
c

1 − F (U ))
× (1 − F (U )) = �.

13The formula in (5) illustrates the trade-o� of attraction versus persuasion. If the payo� function is non-

decreasing, a higher choice of U increases the attractiveness of the �rm. Its probability of realization (1 − F (U ))

is, however, decreasing in U (holding a �xed), indicating that persuasion is less e�ective with an aggressive choice

of U .
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structure of the payo� function (in e�ective values) facing each individual �rm. We establish

equilibrium existence by explicitly constructing a mixed strategy that randomizes over binary

distributions of posteriors.

Formally, the (reformulated) game is as follows. Each of the n �rms simultaneously chooses

an inducible e�ective-value distribution Hi ∈ I[0,Ū] ( ̄
U ), with the objective of maximizing the

probability that its realized e�ective value, wi , is the highest among those of all the �rms (with

fair tie-breaking).

We begin with the following preliminary observations about the e�ective-value distribution

in any symmetric equilibrium.

Lemma 4.1. In any symmetric equilibrium, a �rm’s e�ective-value distribution has no atoms except

possibly at 0 and Ū .

The lemma is quite intuitive. If other �rms are placing an atom at some w ∈ (0, Ū ), it is

never optimal for a �rm to respond by placing an atom there for the following reason. If w is a

reservation value, o�ering a marginally more informative signal discretely improves the power

of attraction. If w is a posterior realization, shifting the weight to a marginally better posterior

realization discretely improves the power of persuasion.14

The lemma implies that in any symmetric equilibrium, the expected payo� facing an individ-

ual �rm as a function of its realized e�ective value, w , takes the following form:

Π (w;H ) ≡

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

H (0)n−1
n if w = 0

H (w)n−1 if w ∈ [0, Ū )

limw′→Ū −
1−H(w′)n
n(1−H (w′)) if w = Ū

, (6)

for some distribution function H ∈ I[0,Ū] ( ̄
U ) that is continuous over (0, Ū ).

As the consumer eventually purchases from one of the �rms (recall that her outside option

is assumed to be irrelevant), the �rms’ competition is a zero-sum game and the ex-ante expected

payo� of each �rm is 1/n in any symmetric equilibrium. The crucial step in our equilibrium
14This argument does not apply to the e�ective value 0 because assigning positive weight there corresponds

uniquely to full disclosure, a possibility that can arise in equilibrium as we have shown in Section 3.2 (and will

rederive below).
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characterization is to show that the payo� function Π (w;H ) facing each �rm must possess the

linear structure depicted in Figure 2.

Besides highlighting a key property of the competition over e�ective values, the linearity

of the payo� function signi�cantly helps simplify our search for an equilibrium, as each linear

structure is characterized by a pair of scalars that can readily be identi�ed by simple equilibrium

conditions.

The su�ciency of the linear structure for a symmetric equilibrium is straightforward. When

an individual �rm faces a payo� function that has the linear structure above, it is indi�erent

between o�ering any reservation value on the support and is thus willing to randomize over the

relevant range. Loosely speaking, the linear structure is also necessary because this is the only

way to ensure the incentive-compatibility for randomization over an interval of interior e�ective

values. If, over an interval, say [̄
I , Ī] ⊂ (0, Ū ), the payo� function Π (w;H ) facing an individual

�rm is convex and non-linear, no positive mass would be assigned to its interior, implying an

atom at the boundary points, contradicting Lemma 4.1. If the payo� function is, on the other

hand, concave and non-linear over (0, Ū ), �rms are willing to put a positive measure close to

0 only if the payo�s of o�ering reservation values arbitrarily close to Ū all coincide with 1/n.

A straightforward computation shows that this is generically impossible. The following lemma

details the exact requirement of the linear structure in the equilibrium payo� function, as well as

its necessity for a symmetric equilibrium.

Lemma4.2. Suppose the consumer’s outside option is irrelevant. Denote byH a symmetric-equilibrium

distribution of e�ective values chosen by each �rm, let � ∈ [0, 1] be the probability that a �rm o�ers

full information, and let Û ≡ sup (supp (H ) /
{
Ū
}
). Then the payo� function in e�ective values

facing each individual �rm must have the following linear structure:

Π (w;H ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
n (� (1 − �))

n−1 if w = 0

(� (1 − �))n−1 + (1−��)n−1−(�(1−�))n−1

Û
w if w ∈ (0, Û ]

(1 − ��)n−1 if w ∈ (Û , Ū )
1−(1−��)n

n�� if w = Ū

, (7)

The symmetric-equilibrium distribution of e�ective values can thus be fully characterized by

the atom � at the top and the upper bound Û of the interior support. Note that full disclosure, i.e.,
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(a) The equilibrium payo� when � ≤
̄
�. (b) The equilibrium payo� when � ∈ (

̄
�, �̄).

(c) The equilibrium payo� when � ≥ �̄.

Figure 2: The linear structure of a �rm’s payo� function, Π (w;H ).
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a binary e�ective-value distribution with support
{
0, Ū

}
, is a special case of the linear structure

above with � = 1 and Û = 0.

To pin down the equilibrium distribution of e�ective values, it remains to solve for the pa-

rameters � and Û in (7). Consider �rst the case of an interior atom at the top, � ∈ (0, 1). Here,

reservation values Ū and Û are both on the support, and hence must deliver the equilibrium

payo� of 1/n. Moreover, the linearity of the payo� function implies that the optimal payo� of

adopting reservation value Û is Π (
̄
U ;H ). Consequently,

1
n

= Π (
̄
U ;H ) , and (8)

1
n

= ̄
U
Ū
× Π (Ū ;H) +(1 − ̄

U
Ū ) × Π (0;H ) . (9)

If, on the contrary, � takes on the extreme values of 0 and 1 in equilibrium, only one of the

equations above holds. In the case of no atom at the top, i.e., � = 0, Û is on the support while Ū is

not. Therefore, equation (8) is still necessary, but the right-hand side of (9) can fall below 1/n. In

the case of full disclosure in equilibrium, i.e., � = 1, equation (9) is necessary, but the right-hand

side of (8) can fall below 1/n.

After substituting (7) into (8) and (9), the observations above reduce the quest for a symmetric

equilibrium into solving a system of at most two equations in two unknowns. The following

lemma explicitly states the unique solution of the system.

Lemma 4.3. Except for the knife-edge case in which � = 1/2 and n = 2, the system (8) and (9) has

a unique solution in (�, Û) that depends on the average product quality � and the total number of

�rms n as follows. Recall �̄ ≡ 1 − ( 1n)
1
n−1 and de�ne

̄
� ≡ 1

n .

(a) If � ≤
̄
�, then � = 0 and Û = n

̄
U .

(b) If � ∈ (
̄
�, �̄), then � ∈ (0, 1) is the unique solution to

(1 − ��)n − (� (1 − �))n = 1 − � , (10)

and

Û =
(1 − ��)n−1 − (� (1 − �))n−1

n−1 − (� (1 − �))n−1 ̄
U . (11)

(c) If � ≥ �̄, then � = 1 and Û = 0.

If � = 1/2 and n = 2, then cases (a)-(c) coincide, and there exists a continuum of solutions in

which � takes any value in [0, 1] and Û is given in (11).
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Making use of the necessary conditions for a symmetric equilibrium, Lemmata 4.2 and 4.3

together pin down the unique payo� function that can arise in equilibrium. The distribution of

e�ective values that generates this payo� function can be readily recovered using (6):

H (w) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

� (1 − �) if w = 0

((� (1 − �))
n−1 + (1−��)n−1−(�(1−�))n−1

Û
w)

1
n−1

if w ∈ (0, Û ]
1 − �� if w ∈ (Û , Ū )

1 if w = Ū

. (12)

The linearity of the payo� function (7) implies that the e�ective-value distribution H above

delivers an expected payo� of 1/n, as required. It remains to show that this distribution is indeed

inducible, i.e., that there exists a mixed strategy over distributions over posteriors that implies

the e�ective-value distribution (12). Establishing the inducibility of distribution H ensures that it

is indeed a mutual best response, thus giving a symmetric equilibrium. The following lemma ex-

plicitly constructs such a mixed strategy, which involves randomization over binary distributions

over posteriors only.

Lemma 4.4. The e�ective-value distribution H in (12), with � and Û given by Lemma 4.3, is in-

ducible. Moreover, it can be generated by a mixed strategy (G (⋅) , {FU (⋅)}U∈supp(G)) in which FU is

binary for each U ∈ supp (G).

While Lemma 4.4 identi�es a particularly simple mixed strategy that implements the equi-

librium e�ective-value distribution, this is not the unique implementation. Therefore, while we

establish uniqueness of the e�ective-value distribution in equilibrium, the mixed strategy that

generates it may not be unique.

The binary implementation described in this lemma has several interesting properties. Once

the initial randomness from the �rms mixing is resolved, the consumer is faced with n �rms, each

with unique binary distributions that nest within each other, like a matryoshka doll. Evidently,

the experiments chosen by the �rms can be ranked according to the Blackwell order, and, on

path, the consumer searches them in order of their Blackwell informativeness. The consumer

stops only if she observes the high realization at a �rm. Otherwise, she continues her search, and

selects the last �rm no matter its realization. Though this is a search in which recall is allowed, the
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consumer never utilizes this, and never returns to a �rm from which she had previously moved

on.

We see that a scenario arises endogenously that allows for a much simpler (optimal) search

protocol than Pandora’s Rule. Namely, the consumer merely visits the �rms in order of informa-

tiveness, and selects a �rm if its high value is realized–indeed it is obvious that she should stop

since she knows that she will not see a higher realization at any of the remaining �rms. If she

reaches the last �rm, she selects that �rm with certainty.

The analysis above is summarized by the following proposition.

Proposition 4.5. Except for the knife-edge case in which � = 1/2 and n = 2, there exists a unique

symmetric equilibrium in the �rms’ competition over e�ective values. If � = 1/2 and n = 2, there

exists a continuum of symmetric equilibria. The equilibrium e�ective-value distribution gives rise to

a payo� function with a linear structure as in (7).

The linearity of the payo� function (7) highlights how the trade-o� between attraction and

persuasion in �rm’s signal design problem is balanced in equilibrium. Choosing a more infor-

mative signal, and hence a high reservation value, U , facilitates the attraction of the consumer.

The result of more aggressive disclosure, corresponding to a higher choice of U , is a higher like-

lihood that the consumer will pay the �rm a visit, which is indicated by the strict increase of the

payo� function (7) over [ ̄
U , Û ]. Increasing one’s attractiveness, however, comes at the expense

of persuasion e�ectiveness. Speci�cally, the probability of realizing U as the e�ective value, and

hence the likelihood of converting a visit into a sale, is decreasing in the choice of U , as the mean

of any inducible e�ective-value distribution is �xed at
̄
U (recall Lemma 3.6). The linearity of the

payo� function (7) above and below
̄
U implies that the aforementioned bene�t and cost cancel

out exactly in equilibrium and that the �rm is indi�erent between o�ering a range [ ̄
U , Û ] of

reservation values.

Figure 2 depicts the three possible forms a �rm’s payo� function may take and thereby indi-

cates the three possible guises of the equilibrium distributions. If the average quality is su�ciently

low, � ≤
̄
�, �rms choose atomless distributions over e�ective values such that the distribution of

the maximum realized e�ective value that any one �rm faces is the uniform distribution on n
̄
U .

On the other hand, if the average quality is su�ciently high, � ≥ �̄, �rms provide full information.
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Finally, if � ∈ (
̄
�, �̄), the equilibrium distributions still yield a linear payo� on an interior interval

but also have atoms at 0 and Ū .

We conclude this section by discussing the e�ect of the search cost, c, on the consumer’s wel-

fare. While an increase in c has a direct negative e�ect on the consumer’s payo�, it induces more

intense competition between the �rms, which could potentially bene�t the consumer. In fact, in

the price-competition setting of Choi et al. (2018), the indirect e�ect of intensi�ed competition

can be so strong that the consumer surplus increases with a higher search cost. In contrast, we

�nd that when the search cost, c, is positive, the indirect e�ect can only partially o�set the direct

negative e�ect, and the consumer still su�ers from an increase in c.

Corollary 4.6. For c > 0, an increase in c worsens the equilibrium distributions over e�ective values

in the sense of �rst-order stochastic dominance, thus hurting the consumer’s ex-ante welfare.

5 Two Benchmarks

In our main model, the consumer can learn the �rms’ posted signals for free, but discovering

their realizations is costly. Consequently, a �rm’s posted signal plays the dual role of attracting

the consumer to visit it and persuading her to purchase from it. The role of attraction is key in

driving both our full disclosure and information dispersion results. Namely, it ensures that partial

disclosure cannot be supported in a symmetric equilibrium because marginally overbidding one’s

rivals’ reservation value results in a certain visit by the consumer and hence a discrete increase in

the probability of a sale. Moreover, the attraction incentive intensi�es the competition between

the �rms, resulting in more informative disclosure. To illustrate the role of attraction in driving

the results above, we consider two alternative scenarios. In the �rst, the consumer can learn both

the posted signals and their realizations for free. In the second, the signals are no longer posted,

so the consumer only discovers a �rm’s signal and its realization after paying the search cost.

In contrast to our main model, neither setting generates information dispersion as the unique

equilibrium outcome. Moreover, we show that equilibrium disclosure lessens, possibly radically,

when the signals do not play a role in enticing the consumer to visit.
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5.1 Costless Signal Realizations

This subsection considers the case in which c = 0, so that the consumer can observe the �rms’

signals and their realizations at no cost. Crucially, the limit game (with c = 0) is qualitatively

di�erent from the limiting game (with an arbitrarily small but positive c). Regardless of how

small c is, as long as it is positive, the consumer must discover the �rms’ signal realizations in

sequence, and this engenders the attraction motive. In contrast, when c = 0, the consumer has

simultaneous and free access to all signal realizations, and the attraction force vanishes. This

leads to drastically di�erent equilibrium outcomes. First, with c = 0, a symmetric pure-strategy

equilibrium is possible. Second, the (symmetric) equilibrium distribution of e�ective values is

not always continuous at c = 0. When it is not, the informativeness of the equilibrium signal

jumps down discretely at c = 0. This implies, somewhat counterintuitively, that the consumer

may strictly prefer a small positive search cost to no search cost.

When c = 0, equation (1) implies that all feasible distributions over posteriors have a reser-

vation value equal to one and hence, each implied e�ective value coincides with the posterior.

As a result, the competition over e�ective values reduces to a straightforward competition over

posterior realizations. This game is studied in Au and Kawai (2020),15 who show that a unique

pure-strategy symmetric equilibrium exists. Intuitively, a pure-strategy equilibrium is possible

here because overbidding one’s rivals by o�ering a marginally more informative signal no longer

results in an increase in the reservation value. A �rm’s signal, therefore, has no impact on the

likelihood of being inspected by the consumer. As long as the payo� function in posteriors is

fully linear, the �rm is happy to put positive weight on the range of posteriors over which the

payo� function is increasing. As a result, information dispersion is not a necessary feature of the

equilibrium.

The di�erence in nature between the limit game (with c = 0) and the limiting game (with an

arbitrarily small but positive c) raises the natural question of continuity, which is addressed in

the proposition below.

Proposition 5.1. Let Hc be the equilibrium distribution of e�ective values when the search cost

is c ∈ [0, �], and let H ∗ be the limiting distribution as the search cost vanishes, i.e., Hc → H ∗ in

15See also Section 1.1, which references other papers that investigate variants of the frictionless problem.
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distribution as c → 0.

(i) If � ≤
̄
�, H ∗ = H0.

(ii) If � >
̄
�, H ∗ is a mean-preserving spread of H0.

It is immediate that the consumer’s welfare increases if every �rm provides more information.

The proposition above thus implies that if � >
̄
�, the consumer can bene�t from a small positive

search cost c, which allows her to commit to reward informativeness by visiting �rms with a

higher reservation value �rst. This commitment power intensi�es the competition in disclosure

between the �rms, to the bene�t of the consumer. In fact, if � ≥ �̄, then a positive search cost

ensures full disclosure by the �rms. In contrast to the classical Diamond paradox (Diamond

(1971)); here, a small search cost begets the perfect competition (�rst-best) level of information

provision.

5.2 Hidden Signals

This subsection considers the case in which the �rms’ signals are not directly observable to the

consumer at the outset of her search. In particular, she must incur search cost c > 0 to discover

both a �rm’s signal and its realization. Accordingly, a �rm’s choice of signal cannot a�ect the

consumer’s search order. Similar to the benchmark in the previous subsection, this scenario is one

of pure persuasion and with the signal’s role of attraction evaporated, it is natural to expect that

the informativeness of �rms’ signals should decrease. In fact, we �nd that the unobservability of

signals poses a severe holdup problem akin to the Diamond paradox: each �rm has an incentive to

secretly lower the information content of its signal to increase the chance of successful persuasion

once the consumer has paid it a visit. This begets a stark equilibrium outcome: each �rm’s signal

is uninformative, and the consumer does not �nd it worthwhile to actively search.

The reasoning is as follows. As no randomness is resolved until the consumer visits, it is

without loss to focus on pure strategies of the �rms. Consider a purported equilibrium in which

some �rms are believed to provide useful information to the visiting consumer, i.e., conditional on

the visit, the probability that the consumer stops the search and purchases from the visited �rm

is less than one. Let F̃i denote the consumer’s conjecture of �rm i’s distribution over posteriors

and let Ũi be the corresponding reservation value. Given the consumer’s (correct) belief about the
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equilibrium strategies of the �rms, there exists a cuto� posterior realization, denoted by z∗i , above

which the consumer stops the search and buys the product from Firm i conditional on visiting it.16

It follows from Pandora’s rule (Weitzman (1979)) that z∗i ≤ Ũi . If z∗i ≤ �, then Firm i can secure the

consumer’s purchase (conditional on visit) by a distribution over posteriors supported on [z∗i , 1];

that is, Firm i provides no useful information to the consumer. Conversely, if z∗i ∈ (�, Ũi], then the

optimal signal of Firm i assigns no weight to posteriors above z∗i ,17 making reservation value Ũi

impossible. As a result, the only equilibrium involves all �rms providing useless information to

the consumer, who stops her search at the �rst visited �rm. The following theorem summarizes

the discussion above.

Theorem 5.2. Suppose the �rms’ choice of signals are revealed to the consumer only after she pays

the visit cost. In all equilibria, each �rm o�ers a distribution of e�ective values that is degenerate at

̄
U ,18 and the consumer buys from the �rst visited �rm with probability one.

The result can be understood as an informational Diamond paradox–in all equilibria, �rms

provide only the monopoly level of information, and there is no active consumer search.19 It il-

lustrates that the assumption of the public posting of signals is crucial in generating information

dispersion. The driving force behind Theorem 5.2 is the �rms’ incentives to secretly pool pos-

terior realizations above the consumer’s stopping threshold, thus holding up the consumer by

concealing all the information that improves the consumer’s search outcome.

6 Extensions

Now let us explore a number of extensions of the basic model. In the �rst, we construct an

asymmetric equilibrium that exists only when there are three or more �rms. In the second, we

allow for heterogeneity between �rms and characterize the equilibria when there are two �rms
16If the purported equilibrium is symmetric, the value of this cuto� is common for all �rms and is simply Ũi . If

the purported equilibrium is asymmetric, this cuto� can be computed as the optimal continuation value of search

beyond Firm i and is weakly below Ũi .
17This is a simple consequence of the concavi�cation technique of Kamenica and Gentzkow (2011).
18Note that the degenerate e�ective-value distribution can be induced by any feasible distribution over posteriors

supported on [
̄
U , 1], such as the no-disclosure distribution degenerate at �.

19If the consumer has a binding outside option that exceeds � − c, the market breaks down completely.
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with di�erent means. Lastly, we allow for a positive outside option, to which the consumer can

always return, and investigate the comparative statics on �rm pro�t.

6.1 Asymmetric Equilibria

While it is natural to focus on symmetric equilibria (as we did in the main portion of the pa-

per) given the ex-ante homogeneity of �rms, one might wonder whether there are alternative

equilibria that demonstrate heterogeneity in �rms’ strategies. The following proposition points

out that while this is impossible in the two-�rm case, asymmetric equilibria may arise in some

circumstances.

Proposition 6.1. If n = 2, there exist no asymmetric equilibria. Suppose n ≥ 3 and

2(1 − �)
n + 1 − 2�

≥ (1 − �)n−1 ≥
1
n
.

Then there is an equilibrium in which n − 1 �rms choose the binary distribution with support

{0, 1 − c/�} and one �rm chooses the distribution H , where

H (w) =
w

2 (� − c)
, if w ∈ [0, 2 (� − c)] .

In this equilibrium, n − 1 �rms provide full information, and the nth �rm chooses a uniform

distribution over e�ective values. In fact, the distribution over e�ective values chosen by the nth

�rm is the same as the equilibrium distribution when there are two �rms and � is low. Surpris-

ingly, this equilibrium yields a strictly higher consumer welfare than the coexisting symmetric

equilibrium when the search cost is su�ciently small.20 While the proposition above does not

exhaustively identify all asymmetric equilibria, it suggests that an interesting avenue for future

research could be comparing the properties of asymmetric equilibria with the symmetric equilib-

ria on which this paper focuses.

This proposition also contrasts nicely with the results of Armstrong et al. (2009), who show

that when �rms are symmetric, making a �rm prominent lowers consumer welfare. Here, we

encounter an equilibrium in which n−1 �rms are endogenously prominent, yet consumer welfare
20The reason is as follows. First, the right hand inequality in the proposition precludes the existence of a symmetric

equilibrium with full disclosure. Moreover, as the search cost vanishes, the consumer’s welfare in the asymmetric

equilibrium identi�ed in the proposition converges to the �rst-best.
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rises despite the asymmetric behavior. This is because, in contrast to Armstrong et al. (2009), in

which the non-prominent �rms raise prices to the detriment of the consumer, it does not matter

to the consumer here what the last �rm does.

6.2 Two Heterogeneous Firms

Now let us explore the two-�rm scenario when the �rms have products with di�erent expected

qualities. Without loss of generality, let �1 ≥ �2. There are four di�erent regions of the param-

eter universe, each of which begets a di�erent variety of equilibrium outcomes. First, if the gap

between the means is large enough–speci�cally, if the maximum reservation value that �rm 2

can induce is weakly less than that that �rm 1 can induce–then in all equilibria, �rm 1 chooses

the degenerate distribution over e�ective values (corresponding to no information) and �rm 2

chooses any distribution over e�ective values. The consumer visits �rm 1 �rst and selects it for

sure.

Next, if the gap between means is not as large and �rm 2’s mean is not too high (�2 < 1/2), then

there are two regions in which both �rms’ payo� functions–and hence both �rms’ distributions

over e�ective values–have the linear structure that we are familiar with. In both of these regions,

�rm 2 places an atom on e�ective value 0, and in one of the regions �rm 1 places an atom on �rm

2’s maximum e�ective value (1 − c/�2).

Finally, if the gap in means is not large but �2 ≥ 1/2, then �rm 1 chooses a binary distribution

over e�ective values supported on 0 and 1−c/�2, and �rm 2 chooses a piece-wise linear distribution

over e�ective values. This is a similar equilibrium, qualitatively, to the asymmetric equilibrium

from the previous subsection. The attraction incentive dominates for �rm 1who is always visited

�rst. Firm 2, on the other hand, is content to “pick up the scraps.” It is visited second but always

selected by the consumer if visited. Moreover, this equilibrium also shares the same property

as its analog when �rms are homogeneous. The consumer’s payo� converges to the �rst-best

(full information) as the search cost vanishes. Thus, our result from the homogeneous �rms

setting–that search frictions beget the �rst-best level of information provided the average quality

is su�ciently high–carries over to the heterogeneous �rms setting. The theorem below provides

a synopsis of our �ndings.
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Theorem 6.2. (i) If �1 − c ≥ 1 − c/�2, there is a collection of equilibria in which �rm 1 chooses the

degenerate distribution over e�ective values with support {�1 − c} and �rm 2 chooses any distribution

over e�ective values.

(ii) If �2 ≤ 1/2 and 1 − c/�2 ≥ 2 (�1 − c), there is an equilibrium in which �rm 1 and �rm 2 choose

linear distributions over e�ective values. Firm 2 places a mass point on the e�ective value 0.

(iii) If �2 ≤ 1/2 and 2 (�1 − c) ≥ 1 − c/�2 ≥ �1 − c, there is an equilibrium in which �rm 1 and �rm

2 choose linear distributions over e�ective values. Firm 2 places a mass point on the e�ective value

0, whereas �rm 1 places a mass point on the e�ective value 1 − c/�2.

(iv) If �2 ≥ 1/2 and �1 − c < 1 − c/�2, there is an equilibrium in which �rm 1 chooses the binary

distribution over e�ective values with support {0, 1 − c/�2} and �rm 2 chooses a distribution over

e�ective values that is piece-wise linear with one discontinuity.

6.3 Relevant Outside Option

While our main analysis has abstracted away the consumer’s outside option, the tools we devel-

oped can be applied to the setting in which the consumer has a relevant outside option. Suppose

the consumer has an outside option u0 ∈ (0, Ū ) to which she may always return upon quitting

her search.21 A possible interpretation of the outside option is a common product price that is

exogenously determined. With a binding outside option, the game between the �rms is no longer

zero-sum, as the consumer will refrain from making any purchase if the �rms’ quality realizations

turn out to be less than u0, an event that we �nd has a strictly positive probability in all symmetric

equilibria. Retracing the steps in Section 4, mutatis mutandis, we arrive at the following result.

Proposition 6.3. Suppose the consumer’s outside option is relevant, i.e., u0 ∈ (0, Ū ), and that n ≥ 3.

There exists a unique symmetric equilibrium in the �rms’ competition over e�ective values. There is a

cuto� �FD ∈ (0, 1) such that the equilibrium has full information disclosure whenever � ≥ �FD . When

the symmetric equilibrium has partial disclosure, its e�ective-value distribution implies a payo�

function that is linear over its interior support and can only be induced by a mixed strategy.

The introduction of a relevant outside option, therefore, allows us to investigate factors that

can a�ect industry pro�t. Interestingly, we �nd that industry pro�t can be hurt not only by an
21The condition u0 < Ū ensures that search is not strictly dominated for the consumer and thus remains relevant.
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increase in the consumer’s search cost c, but also by an improvement in the average product

quality �. These comparative statics illustrate nicely the signal’s dual role of attraction and per-

suasion. On the one hand, an improvement in � facilitates persuasion, as it lifts the posterior

quality realization on average. In fact, it is easy to see that absent any competition, a �rm would

unambiguously bene�t from having a higher �, as it would allow the �rm to increase the proba-

bility of realizing a posterior quality above u0. On the other hand, with a higher �, the signal’s role

as an instrument of attraction becomes ever more important, as the chance that the consumer

visits low-ranking �rms dwindles. A higher average quality thus incites more aggressive infor-

mation revelation–which harms pro�ts–by lowering the probability that the consumer makes a

purchase. We �nd that the former e�ect is more important when � is relatively low, but the latter

e�ect dominates when � is relatively high.

A standard prediction from the literature on random consumer search (e.g., Wolinsky (1986)

and Anderson and Renault (1999)) is that a higher search cost increases pro�ts, as it raises the

likelihood that consumers stop and purchase conditional on visiting a �rm, thus softening the

market competition. In our setting, the �rms’ signal choices direct the consumer’s search, and an

increase in the search cost is bad news for the �rms, as the consumer is less willing to visit them

in the �rst place. In equilibrium, �rms respond by disclosing more aggressively, which results

in a higher likelihood that the consumer takes up her outside option, and thus a lower industry

pro�t.22

Furthermore, the tension between attraction and persuasion has interesting implications con-

cerning the impact of the average quality, �, on the �rms’ pro�ts. On the one hand, a higher �

makes persuasion easier: ceteris paribus, the likelihood of a signal realization more favorable than

the consumer’s outside option goes up with a higher �, thus raising industry pro�t. On the other

hand, as noted above, a high � makes the attraction motive relatively more important and pushes

�rms to reveal more information. This increases the likelihood that the consumer opts for the

outside option eventually, thus diminishing industry pro�t. We show that the second e�ect can

be so strong that industry pro�t may be decreasing in the average product quality.

Corollary 6.4. (i) Suppose u0 < �FD − c. There exists a �∗ < �FD such that a �rm’s equilibrium pro�t

is increasing in � for all � < �∗, and decreasing in � for � ∈ (�∗, �FD).
22Choi et al. (2018) report a similar �nding in their price-competition setting.
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(ii) A �rm’s equilibrium pro�t is weakly decreasing in the consumer’s search cost c, and strictly

so if u0 is in some intermediate region.

7 Discussion and Concluding Remarks

In this paper, we explore competition in information provision in a sequential, directed search

setting. By developing a geometric approach to the optimal information design problem in this

environment, we are able to characterize the unique symmetric equilibrium via the simple linear

structure of the payo� function it induces. We illustrate the power of this technique beyond

the symmetric setting with a preliminary investigation of asymmetric equilibria and competition

between heterogeneous �rms. We believe our approach may prove useful in other applications

of competitive information design in which search frictions arise naturally.

Our model highlights the key economic forces at work in this class of environments; namely,

the con�icting motives of attraction and persuasion. We uncover a number of insights pertaining

to how the underlying environment shapes these two incentives and the ensuing information

provision. For instance, a su�ciently high average quality and/or a large number of competitors

makes the attraction motive dominant, leading to full information in equilibrium.23 More gener-

ally, an improvement in average product quality can be detrimental to �rms’ equilibrium pro�ts

because the cost of excessive information revelation outweighs its direct bene�t.

Outside of the high average quality case, although the attraction incentive remains, the per-

suasion motive has more of an e�ect: if everyone else provides full information, it is now worth-

while for a �rm to provide no information and count on the consumer to visit and select it at

the end of a (theretofore unsuccessful) search. The forces of attraction and persuasion can be

balanced only in a mixed-strategy equilibrium, resulting in dispersion in information provision

(despite the market’s ex-ante homogeneity). By contrasting this �nding with alternative settings
23This result rings true, in the sense that there are many markets in which �rms seem to provide a large amount of

information to visiting consumers. The �ne piano purveyor, Steinway & Sons, has practice rooms in its showrooms

so that people can get a feel for the instrument themselves, many car dealerships allow test-drives and some even

allow prospective buyers to keep the car overnight, upscale clothing stores include changing rooms (and mirrors) for

trying on their products, and anyone who has mistakenly wandered through the perfume section of a department

store can attest that the perfume sellers provide ample olfactory evidence about their wares.
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in which the attraction motive is irrelevant, we show not only that the attraction motive is key

to generating the information dispersion result, but also, somewhat counterintuitively, that the

consumer can actually bene�t from having a small positive search cost (rather than none).

The assumption that �rms have perfect �exibility in their ability to design signals not only aids

us in obtaining a straightforward equilibrium characterization but also helps make transparent

the aforementioned tension between attraction and persuasion. While reducing noise always

helps attract the consumer, the e�ectiveness of persuasion can be enhanced only by introducing

noise in a speci�c manner.24 A restrictive set of feasible signals might thus obscure our model’s

essential trade-o�. Moreover, although in practice, a �rm’s control over information revelation is

never perfect, the economic insights we uncover remain valid provided the set of feasible signals

is not too meagre. Consider, for instance, the result of full disclosure with a su�ciently high �

or n. If the signal space were more restrictive than the one we consider, the attraction motive

would still dominate if competition were su�ciently intense. In sum, the general approach that

we take in this paper, in which �rms have the �exibility to design any signal, allows us to cleanly

illustrate the fundamental forces at work.

Our analysis provides a number of testable predictions that await empirical investigation.

Indeed, one of the main ideas emerging from our analysis is the possibility of information dis-

persion when competition is not that intense. Do we observe such information dispersion in

real-world markets? Unlike price dispersion, which is relatively easy to observe and measure

(since prices are merely scalars), information levels are much harder to quantify, which could ex-

plain the dearth of formal evidence of this phenomenon. This di�culty notwithstanding, casual

observation suggests that such variation does exist. An alternative interpretation of our model

is that �rms compete by choosing their product designs, which a�ect the distributions of their

match values with the consumers. Naturally, a broad design induces a more concentrated distri-

bution of match values, whereas a niche design induces a more spread-out distribution. With this

interpretation, our model suggests that design dispersion can arise despite ex-ante homogeneity.

24Indeed, how to do this optimally is the central theme of the literature on Bayesian persuasion.
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A Sections 3, 4, and 5 Proofs

A.1 Proof of Lemma 3.2

This is a special case of Lemma 4.1 and is thus omitted.

A.2 Proof of Proposition 3.3

This proposition is a special case of Proposition 4.5; speci�cally, case (iii) of Lemma 4.3.

A.3 Proof of Lemma 3.6

Given a distribution F over posteriors, the mean of the e�ective-value distribution it implies is

computed as follows:

∫
Ū

0
wdHF (w) = Ū − ∫

Ū

0
HF (w) dw = Ū − ∫

U

0
F (w) dw − ∫

Ū

U
1dw

= U − (U + c − �) =
̄
U .

Here, the �rst equality makes use of integration by parts, the second equality makes use of the

de�nition of HF (given by (2)), and the third equality makes use of the reservation-value equation

(1), which implies ∫ U
0 F (w) dw = U + c − �.

Using the reservation-value equation (1) again, the expected e�ective value conditional on

falling short of U is given by
∫ U
0 wdF (w)
F (U )

= U −
U −

̄
U

F (U )
. (13)

It is clearly increasing in F (U ). As ∫ 1
U F (w) dw = 1 − c −U , the value of F (U ) is maximized if F is

�at over the interval (U , 1), in which case F (U ) = 1 − c
1−U . In a similar vein, using the implication

of the reservation-value equation that ∫ U
0 F (w) dw = U −

̄
U , the value of F (U ) is minimized if

F is �at over (0, U ), in which case F (U ) = 1 − ̄
U
U . Substituting these bounds on F (U ) into (13)

yields the bounds on the expected e�ective value conditional on falling short of U as stated in

the lemma.
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A.4 Proof of Lemma 4.1

Suppose H has an atom at some w̃ ∉
{
0, Ū

}
. We show that the best response to Π (⋅;H ) does not

put any positive mass at w̃ . Using Proposition 3.7, the best response to Π (⋅;H ) puts a positive

mass at w̃ only if either there is some U > w̃ such that ΠU (w̃;H ) = Π̂U (w̃;H ), or if w̃ is an

optimal reservation value. First, as H has an atom at w̃ , we have Π (w̃;H ) < limw→w̃+ Π (w;H ).

Consequently, ΠU (w̃;H ) < Π̂U (w̃;H ) for all U > w̃ . Moreover, w̃ cannot possibly be an optimal

reservation value either. To see this, recall the maximal payo� given reservation value w̃ is

V (w̃) = max
a∈[0,ā(w̃)]

Π (w̃;H ) −
Π (w̃;H ) − Π̂w̃ (a;H )

w̃ − a
[w̃ −

̄
U ] .

Take an "̄ > 0 su�ciently small so that Π (w;H ) is continuous over (w̃, w̃ + "̄). Now for " ∈ (0, "̄),

V (w̃ + ") = max
a∈[0,ā(w̃+")]

Π (w̃ + ";H ) −
Π (w̃ + ";H ) − Π̂w̃+" (a;H )

w̃ + " − a
[w̃ + " −

̄
U ]

≥ max
a∈[0,ā(w̃+")]

lim
w→w̃+

Π (w;H ) −
limw→w̃+ Π (w;H ) − Π̂w̃+" (a;H )

w̃ + " − a
[w̃ + " −

̄
U ] ,

as Π is nondecreasing. By the theorem of the maximum, the last expression above is continuous

in ".25 Taking limits on both sides yields

lim
"→0

V (w̃ + ") ≥ max
a∈[0,ā(w̃)]

lim
w→w̃+

Π (w;H ) −
limw→w̃+ Π (w;H ) − Π̂w̃ (a;H )

w̃ − a
[w̃ −

̄
U ] ,

which strictly exceeds V (w̃) since limw→w̃+ Π (w;H ) > Π (w̃;H ).

A.5 Proof of Lemma 4.2

The expected payo�s at e�ective values w = 0, Û , and Ū stated in (7) follow from the de�nitions

of � and Û . Therefore, it su�ces to show that Π (w;H ) is necessarily linear over w ∈ (0, Û ].

First, in equilibrium, the restriction of payo� function Π to the domain (0,
̄
U ] must be weakly

concave, i.e., Π
̄
U (w;H ) = Π̂

̄
U (w;H ) for all w ∈ (0,

̄
U ]. Suppose to the contrary that there is

some w′ ∈ (0,
̄
U ) such that Π

̄
U (w′;H ) < Π̂

̄
U (w′;H ). Then there must be an open neighbourhood

around w′ over which no optimal e�ective-value distribution assigns any positive measure, and

Π
̄
U (⋅;H ) must be �at over this neighbourhood. As Π

̄
U (w′;H ) < Π̂

̄
U (w′;H ) implies that there is

25Note that Π̂w̃+" (a;H ) is concave and thus continuous in a.
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some w1 ∈ (w′,
̄
U ) such that Π

̄
U (w′;H ) < Π

̄
U (w1;H ), Π

̄
U must have a discrete jump (and hence

H has an atom) somewhere in the interval [w′, w1], contradicting Lemma 4.1.

Next, we show that Π
̄
U (w;H ) = Π̂

̄
U (w;H ) must be linear over the region (0,

̄
U ]. Note that

the equilibrium payo� can always be achieved by no disclosure, so Π (
̄
U ;H ) = 1/n; otherwise,

an atom must be found at inf (supp (H )) ∩ [ ̄U , Ū ], contradicting Lemma 4.1. The linearity of Π
̄
U

may therefore be stated as Π
̄
U (w;H ) = (� (1 − �))n−1 + n−1−(�(1−�))n−1

̄
U w for all w ∈ (0,

̄
U ]. The weak

concavity of Π
̄
U implies that if it is not linear, then Π

̄
U (w′;H ) > (� (1 − �))n−1 + n−1−(�(1−�))n−1

̄
U w′

for all w′ ∈ (0,
̄
U ). Using the concavi�cation approach of e�ective-value optimization, e�ective

values arbitrarily close to 0 can therefore lie on the support of H if and only if e�ective values

arbitrarily close to Ū are also on the support, i.e., Û = Ū . The expected payo� of o�ering a

reservation value arbitrarily close to Û converges to

̄
U
Û
Π(Û ;H) +(1 − ̄

U
Û )Π(a (Û) ;H) → ̄

U
Ū
(1 − ��)n−1 +(1 − ̄

U
Ū ) (� (1 − �))n−1 .

As the payo� of o�ering reservation value Û must also equal 1/n, we have

1
n
= � (1 − ��)n−1 + (1 − �) (� (1 − �))n−1 .

The expected payo� of o�ering reservation value Ū is given by

1
n
= �

1 − (1 − ��)n

n��
+ (1 − �)

(� (1 − �))n−1

n
.

The only case where both of the equations above hold is when � = 0 and � = 1/n.

Claim A.1. Suppose Π is such that Π
̄
U is concave and non-linear. Suppose also that Π (

̄
U ) gives the

maximum payo� under Π. There exists an " > 0 such that for all reservation values U ∈ [Û − ", Û ]
that can bring about the optimal payo� Π (

̄
U ), the corresponding e�ective-value distributions must

have support {ā (U ) , U }.

Proof. Observe �rst that Π (U ) < Π (
̄
U ) + Π(Û )−Π( ̄U )

Û−
̄
U

× (U −
̄
U ) for all U ∈ [ ̄

U , Û ]; otherwise, the

assumption of Π
̄
U being concave and non-linear (Π

̄
U (w′;H ) > Π( ̄U )

̄
U ×w′ for all w′ ∈ (0,

̄
U )) would

imply that
̄
U is suboptimal.

Next, we establish that if reservation value U can deliver this the optimal payo� Π (
̄
U ), it can

be achieved by an e�ective-value distribution with binary support {w, U } for some w < ā (U ).
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On the graph of Π, (
̄
U ,Π (

̄
U )) lies on the straight line connecting (U ,Π (U )) and (w, Π̂U (w)) for

some w < ā (U ). If Π (w) < Π̂U (w), there must be some u′ ∈ (
̄
U , U ) such that (w, Π̂U (w)) can

be expressed as a convex combination of (u′,Π (u′)) and (w′,Π (w′)), for some w′ < w . This is,

however, impossible, as this implies that a feasible e�ective-value distribution (w′, u′) can achieve

a payo� exceeding Π (
̄
U ). Therefore, we must have Π (w) = Π̂U (w).

Now as reservation value U is optimal and Π
̄
U is concave, either w = ā (U ) or Π is linear

over [w,
̄
U ]. If Π is not linear over [w,

̄
U ], we are done as this implies that for all optimal reser-

vation values U ′ larger than U , the corresponding e�ective-value distributions must have sup-

port {ā (U ′) , U ′}. However, as Π is not fully linear and Π
̄
U is concave, reservation values su�-

ciently close to Û must achieve the optimal payo� by an e�ective-value distribution with support

{ā (U ) , U }. This completes the proof of the claim. ■

Suppose Π
̄
U is indeed nonlinear in equilibrium and that Û = Ū . The claim above pins down

the form of the e�ective-value distributions for reservation values U close to Ū : they must all

have support {ā (U ) , U }. With this restriction, the payo� of a �rm o�ering reservation value

U ∈ [Ū − ", Ū ] can be expressed as

Ψ (U ) = (1 −
c

1 − U )(1 − G (U ) − c ∫
Ū

U

1
1 − s

dG (s))

n−1

+
c

1 − U (1 − c ∫
Ū

U

1
1 − s

dG (s))

n−1

,

where G (⋅) is the distribution of reservation values. As all reservation values U ∈ [Ū − ", Ū ] lead

to the same payo�, Ψ′ (U ) = 0 or

0 =
c

(1 − U )2 [(
1 − c ∫

Ū

U

1
1 − s

dG (s))

n−1

−(1 − G (U ) − c ∫
Ū

U

1
1 − s

dG (s))

n−1

]

+ (n − 1)
[ (

c
1 − U )

2

(1 − c ∫
Ū

U

1
1 − s

dG (s))

n−2

−(1 −
c

1 − U )
2

(1 − G (U ) − c ∫
Ū

U

1
1 − s

dG (s))

n−2

]
dG (U )
dU

,

provided that n ≥ 3. Substituting U = Ū gives

Ψ′ (Ū ) = 0⇔ 0 =
c

(1 − Ū )
2 + (n − 1)(

c
1 − Ū )

2 dG (Ū )
dU

,

which is impossible. If n = 2, Ψ′ (U ) = 0 simpli�es to ( 2c
1−U − 1) g (U ) +

c
(1−U )2G (U ) = 0. Evidently,

this equation is impossible at U = Ū .
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Finally, the linearity of the payo� function Π (w;H ) over w ∈ (0, Û ] follows immediately

from the linearity of Π
̄
U . In fact, it is necessary that

Π (w;H ) = (� (1 − �))n−1 +
n−1 − (� (1 − �))n−1

̄
U

w ,

for all w ∈ (0, Û ]. If Π (w′;H ) > (� (1 − �))n−1 + n−1−(�(1−�))n−1

̄
U w′ for some w′ ∈ ( ̄

U , Û ], then a �rm

can achieve an expected payo� exceeding 1/n by o�ering reservation value w′, a contradiction.

If Π (w′;H ) < (� (1 − �))n−1 + n−1−(�(1−�))n−1

̄
U w′ for some w′ ∈ ( ̄

U , Û ], this reservation value is sub-

optimal and there is an open neighbourhood around it that does not lie on the support of H . This

implies an atom somewhere in (w
′, Û), again a contradiction.

A.6 Proof of Lemma 4.3

Substituting (7) into equations (8) and (9) and simplifying gives, respectively,

Û =
(1 − ��)n−1 − (� (1 − �))n−1

n−1 − (� (1 − �))n−1 ̄
U , and (14)

(1 − ��)n − (� (1 − �))n = 1 − � (15)

We begin by showing that (15) has a unique solution in � ∈ (0, 1) if and only if � ∈ (n−1, 1 − n−
1
n−1 ).

To this end, de�ne T ∶ [0, 1] → ℝ by T (�) ≡ (1 − ��)n − (� (1 − �))n − (1 − �). The following

observations are immediate but useful. First, 0 and 1 are both roots of T . Second, by direct com-

putation, T ′′ (�) > 0 ⇔ � < (� + (�−2 (1 − �)n)
1
n−2

)
−1

, so T ′′ changes sign at most once. Third,

T ′ (0) = 1 − n� and T ′ (1) = 1 − n (1 − �)n−1.

The case � ≤ n−1 has T ′ (0) ≥ 0 and T ′ (1) < 0. The fact that T ′′ changes sign only once implies

that T ′ also changes sign only once. As T (0) = T (1) = 0, it is necessary that T (a) > 0 for all

� ∈ (0, 1).

The case � ∈ (n−1, 1 − n−
1
n−1 ) has T ′ (0) < 0 and T ′ (1) < 0. The fact that T ′′ changes sign

only once, together with T (0) = T (1) = 0, implies that T ′ is positive if and only if � lies in some

interior interval. Therefore, T crosses the horizontal axis once and only once, and it occurs in

this interval.

The case � ≥ 1 − n− 1
n−1 has T ′ (0) < 0 and T ′ (1) ≥ 0. The fact that T ′′ changes sign only once

implies that T ′ also changes sign only once. As T (0) = T (1) = 0, it is necessary that T (a) < 0 for

all � ∈ (0, 1).
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Summing up the observations above reveals that (15) has a unique solution in � ∈ (0, 1) if and

only if � ∈ (n−1, 1 − n−
1
n−1 ).

Consider an equilibrium with � ∈ (0, 1). We have shown above that this is feasible only if

� ∈ (n−1, 1 − n−
1
n−1 ). It remains to show that in this case, Û given by (14) lies between

̄
U and

Ū . It is immediate that Û ≥
̄
U is equivalent to n−1 ≤ (1 − ��)n−1, which follows immediately

from � < 1 − n− 1
n−1 and � ∈ (0, 1). Straightforward algebra reveals that Û ≤ Ū is equivalent to

(1 − ��)n−1 ≤ �n−1 + (1 − �). As � and � are related by (15), the last inequality is equivalent to

requiring that

S (�) ≡ (�n−1 + (1 − �))
n
n−1 − (1 − �) − ((�n

−1 + (1 − �))
1
n−1 − (1 − �))

n

be non-negative for all � ∈ (0, 1). To show this, denote � (�) ≡ (�n−1 + (1 − �))
1
n−1 , so that � has a

range of [n−
1
n−1 , 1]. As � ′ (�) = − (n� (�)n−2)

−1, the derivative of S can then be expressed as

S′ (�) = 1 − � − n (� − 1 + �)n−1 (1 − (n�n−2)
−1
) .

It is straightforward to verify that S (0) = S (1) = 0 and S′ (0) = S′ (1) = 0. The claim can be shown

by proving that there is a unique cuto� value such that S′ (�) ≥ 0 if and only if � is below the

cuto�. Using the formula for S′ and the de�nition of � , S′ ≥ 0 if and only if

�n−1 − 1
n−1 − 1

≤ (
1 − �

n − �−(n−2))

1
n−1

+ 1 − � . (16)

Therefore, it su�ces to show that there exists a �̂ ∈ (n−
1
n−1 , 1) such that (16) holds if and only if

� > �̂ . Rearranging (16) gives

L (�) ≡ (
�n−1 − 1
n−1 − 1

+ � − 1)

n−1

≤
1 − �

n − �−(n−2)
≡ R (�)

Note that L (n−
1
n−1 ) = R (n−

1
n−1 ) and L (1) = R (1). Moreover, L′ (�) , R′ (�) < 0. Also, R′′ (�) > 0;

whereas L′′ (�) switches sign only once, from negative to positive. Taken together, L (�) ≤ R (�)

if and only if � is su�ciently large.

Consider next an equilibrium with � = 0. (14) is necessary and gives Û = n
̄
U . Clearly, this is

feasible if and only if Û ≤ Ū ⇔ � ≤ n−1.

Finally, consider an equilibrium with � = 1. The requirement Π (
̄
U ;H ) ≤ n−1 boils down to

(1 − �)n−1 ≤ n−1, which is equivalent to � ≥ 1 − n− 1
n−1 .
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A.7 Proof of Lemma 4.4

Because of the continuity ofH (w) (given by (7)) over (0, Û ], it su�ces to show that in this region,

there is a mixed strategy that can match its density, denoted by ℎ, which is given by

ℎ (w) =
(1 − ��)n−1 − (� (1 − �))n−1

(n − 1) Û ((� (1 − �))
n−1 +

(1 − ��)n−1 − (� (1 − �))n−1

Û
w)

− n−2n−1

. (17)

To this end, de�ne a mapping b ∶ [ ̄
U , Û ] → [0,

̄
U ] by K (U ) = K (b (U )), where K ∶ [0, Ū ] → ℝ

is given by

K (w) ≡ ((� (1 − �))
n−1 + ((1 − ��)n−1 − (� (1 − �))n−1)

w
Û )

1
n−1

×
(
n
̄
U + (n − 1)

(
Û

(1 − ��)n−1 − (� (1 − �))n−1)
(� (1 − �))n−1 − w

)
,

and parameters � and Û are as given in Lemma 4.3. For each U ∈ [ ̄
U , Û ], let FU be a binary

distribution with support {b (U ) , U } and mean
̄
U ; and let FŪ be the binary distribution with

support
{
0, Ū

}
and mean

̄
U . Moreover, let G be a reservation-value distribution that has an

atom � ∈ [0, 1] at Ū and a density for U ∈ [ ̄
U , Û ] as follows:

g (U ) ≡
(1 − ��)n−1 − (� (1 − �))n−1

(n − 1) Û ((� (1 − �))
n−1 +

(1 − ��)n−1 − (� (1 − �))n−1

Û
U)

− n−2n−1 U − b (U )

̄
U − b (U )

.

Below, we show that the mixed strategy (G, {FU (⋅)}U∈[ ̄U ,Û]∪{Ū})
generates the e�ective-value

distribution H (de�ned in (12)).

First, we show that e�ective-value distribution FU is inducible for each U ∈ [ ̄
U , Û ] ∪

{
Ū
}

.

Note that the mapping b is well-de�ned: a direct computation reveals thatK (w) is strictly concave

with a peak at
̄
U and that K (0) = K (Û). We need to show that b (U ) ≤ ā (U ) ≡ �−c−�U

1−c−U (as de�ned

in Lemma 3.6). Furthermore, note that because ā (
̄
U ) = b (

̄
U ), b (Û) = 0 = ā (Ū ) ≤ ā (Û), and

ā (U ) is decreasing and strictly concave, it su�ces to show that b (U ) is convex. To this end, we

adopt a change of variable: let v = U −
̄
U , and d (v) =

̄
U − b (

̄
U + v).26 The implicit de�nition of

b implies K (
̄
U + v) = K (

̄
U − d (v)); or equivalently,

(M + v)
1
n−1 ((n − 1)M − v) = (M − d (v))

1
n−1 ((n − 1)M + d (v)) , (18)

26Intuitively, d (⋅) represents the "re�ection" of U about
̄
U according to the function K .
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where M ≡
̄
U + Û (�(1−�))n−1

(1−��)n−1−(�(1−�))n−1 . It follows that d (v) < v.27 Now, b (U ) is convex if and only if

d ′′ (v) ≤ 0. Using (18), d ′′ (v) ≤ 0 holds if and only if

K ′′ (
̄
U − d (v))

(K ′ (
̄
U − d (v)))2

≥
K ′′ (

̄
U + v)

(K ′ (
̄
U + v))2

.

Direct computation of the derivatives shows that the inequality above holds if and only if

(
M − d (v)
M + v )

1
n−1

≤ (
M (n − 1) − d (v)

(d (v))2 ) /(
M (n − 1) + v

v2 ) .

Using (18) again, the inequality above is equivalent to requiring d (v) < v.

It remains to verify that the e�ective-value density implied by the mixed strategy de�ned

above matches with ℎ (w) (given in (17)). Consider the e�ective values above
̄
U . Note that these

e�ective values are realized as reservation values in the mixed strategy (G, {FU (⋅)}U∈[ ̄U ,Û]∪{Ū})
.

For w ≥
̄
U , the density implied by the mixed strategy is

g (w) × ̄
U − b (w)
w − b (w)

=
(1 − ��)n−1 − (� (1 − �))n−1

(n − 1) Û ((� (1 − �))
n−1 +

(1 − ��)n−1 − (� (1 − �))n−1

Û
w)

− n−2n−1 w − b (w)

̄
U − b (w)

× ̄
U − b (w)
w − b (w)

= ℎ (w) .

Now consider the e�ective values below
̄
U . These e�ective values are realized as bad posterior

realizations in the mixed strategy. De�ne by q ∶ [0,
̄
U ]→ [ ̄

U , Û ] the inverse of mapping b. For

w ≤
̄
U , the density implied by the mixed strategy is

−q′ (w) ×
q (w) −

̄
U

q (w) − w
× g (q (w))

= −
K ′ (w)

K ′ (q (w))
×
q (w) −

̄
U

q (w) − w
× g (q (w))

=
((� (1 − �))n−1 + ((1 − ��)n−1 − (� (1 − �))n−1) w

Û )
− n−2n−1

((� (1 − �))n−1 + ((1 − ��)n−1 − (� (1 − �))n−1)
q(w)
Û )

− n−2n−1
× ̄

U − w
q (w) − w

× g (q (w))

= ℎ (w) ,

where the �rst equality makes use of the de�nition of the mapping q, and the second and last

equalities make use of the de�nitions of the functions K and g, respectively.
27To see this precisely, note that the function [(M + v)

1
n−1 ((n − 1)M − v)] − [(M − v)

1
n−1 ((n − 1)M + v)] is equal

to 0 when v = 0 and is increasing in v for all v ≥ 0. Moreover, (M − d)
1
n−1 ((n − 1)M + d) is decreasing in d for all

d ≥ 0.
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A.8 Proof of Corollary 4.6

The case of � > �̄ is trivial since the distributions are binary with support {0, 1 − c/�}. Consider

next the case � < �̄. As shown in Lemma 4.3, � is independent of c, so it su�ces to check

the continuous portion of cdf H and Û . The latter is linear and decreasing in c, whereas the

continuous portion of H is

H (w) = ((� (1 − �))
n−1 +

1 − n (� (1 − �))n−1

n (� − c)
w)

1
n−1

,

which is obviously increasing in c. Finally, according to Corollary 1 of Choi et al. (2018), and

appealing to the Law of Iterated Expectations (since we are evaluating welfare from an ex-ante

point of view), the consumer’s ex-ante payo� is given by the expectation of the highest e�ective

value. A worse e�ective-value distribution in the sense of �rst-order stochastic dominance thus

lowers the consumer’s ex-ante payo�.

A.9 Proof of Proposition 5.1

For c = 0, the e�ective value is simply the posterior, as any feasible distribution over posteriors

has a reservation value equal to one. The symmetric equilibrium distribution H0 of e�ective

values is computed in Au and Kawai (2020) and takes the form:

H0 (w) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

(1 − �0�) × (
w
Û0)

1
n−1

if w ∈ [0, Û0]
1 − �0� if w ∈ (Û0, 1)
1 if w = 1

.

By aligning the slopes of the implied payo� function (Π (1;H0) =
Π(Û0;H0)

Û0
if �0 > 0) and the

Bayes-plausibility condition (∫ 1
0 wdH0 (w) = �), the �0 and Û can be pinned down as follows. If

� ≤
̄
� = n−1, �0 = 0 and Û = n�. If � >

̄
�, then Û0 = n�0�(1−�0�)n−1

1−(1−�0�)n
, where �0 is the unique solution to

(1 − �0�)n = 1 − �0.

For the case � ≤
̄
�, the convergence of Hc to H ∗ is immediate by comparing the distribution

reported in Lemma 4.3 with H0 stated above.

Next, consider the case � ∈ (
̄
�, �̄). With c → 0,

̄
U → �; and hence H ∗ is given by (12)

with (1 − ��)n − (� (1 − �))n = 1 − � , and Û = (1−��)n−1−(�(1−�))n−1

n−1−(�(1−�))n−1 �. Recall from the proof of Lemma
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4.3 that when � ∈ (
̄
�, �̄), T (�̃) ≡ (1 − �̃�)n − (�̃ (1 − �))n − (1 − �̃) is negative if and only if �̃

is less than the interior root � of T . As T (�0) < 0, it follows that �0 < � . Now, Π (w;H0) is

fully linear over (0, Û0), has a zero vertical intercept, and passes through the points (�, n−1)

and (Û0, (1 − �0�)
n−1

); whereas Π (w;H ∗) is linear over (0, Û), has a positive vertical intercept

((� (1 − �))n−1), and passes through the points (�, n−1) and (Û0, (1 − ��)
n−1

). Therefore, Π (w;H0)

and Π (w;H ∗) have a unique intersection at � over interior e�ective values (0, 1). As H0 and H ∗

have no interior atoms, Π (w;H0) = H0 (w)n−1 and Π (w;H ∗) = H ∗ (w)n−1 for w ∈ (0, 1). As a result,

H0 and H ∗ have a unique interior intersection at �, at which H0 cuts H ∗ from below. As both H0

and H ∗ have the same mean of �, it follows that H ∗ is a mean-preserving spread of H0.

The case of � ≥ �̄ is immediate: H ∗ corresponds to full disclosure, whereasH0 is strictly partial.

A.10 Proof of Proposition 6.1

Because the game is zero-sum, the �rst part of this result is trivial. If there existed an asymmetric

equilibrium then there would exist multiple pure strategy equilibria. We have already established

the uniqueness of such an equilibrium so by contraposition the result is shown.

To establish the second part of the proposition, observe that the corresponding distribution

over values played by the n−1 �rms is just the prior and is induced by providing full information.

For each of these �rms, its payo� as a function of the induced e�ective value, w , is

Π (w) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

(1−�)n−2

2(�−c) w if w ∈ [0, 2 (� − c)]

(1 − �)n−2 if w ∈ (2 (� − c) , Ū )
1−(1−�)n−1

�(n−1) if w = Ū

.

Thus, the optimal distribution is either the Bernoulli distribution (full information), yielding a

payo� of (1 − (1 − �)n−1) / (n − 1); or has support on [0, 2 (� − c)], yielding a payo� of (1 − �)n−2 /2.

Hence, we need

1 − (1 − �)n−1

n − 1
≥
(1 − �)n−2

2
⇔

2(1 − �)
n + 1 − 2�

≥ (1 − �)n−1.

The construction of the e�ective-value distribution for the �rm that is choosingH is described

earlier in the paper (it is just the low mean two �rm distribution and can be done, e.g., by mixing

over binary distributions over posteriors). From any distribution over e�ective values, other than
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that corresponding to full information (the Bernoulli distribution over posteriors), �rm n’s payo�

is (1 − �)n−1; whereas its payo� from full information is just 1/n, since the vector of strategies

would then be symmetric. Thus, the optimal distribution is either the Bernoulli distribution,

yielding a payo� of 1/n; or any distribution with support on [0, 1 − c/�], yielding a payo� of

(1 − �)n−1. Accordingly, we need (1 − �)n−1 ≥ 1/n. Combining both conditions, we get

2(1 − �)
n + 1 − 2�

≥ (1 − �)n−1 ≥
1
n

.

B Section 6 Proofs

B.1 Proof of Theorem 6.2

The theorem compiles the results from the following four lemmata. One-by-one,

Lemma B.1. If �1 − c ≥ 1− c/�2, there is a collection of equilibria in which �rm 1 chooses the degen-

erate distribution over e�ective values, �1 − c with probability 1, and �rm 2 chooses any distribution

over e�ective values. Firm 1’s distribution over e�ective values corresponds, e.g., to a completely

uninformative signal.

Proof. The result is trivial. Firm 1 is visited �rst and selected with certainty. ■

Lemma B.2. If �2 ≤ 1/2 and 1 − c/�2 ≥ 2 (�1 − c), there is an equilibrium in which �rm 1 and �rm

2 choose distributions over e�ective values H1 (w) and H2 (w), respectively, where

H1 (w) =
w

2 (�1 − c)
, on [0, 2 (�1 − c)] ,

and

H2 (w) = 1 −
�2 − c
�1 − c

+(
�2 − c
�1 − c)

w
2 (�1 − c)

, on [0, 2 (�1 − c)] .

Proof. It is easy to verify that these distributions are feasible, but remains to verify that they are

inducible. To that end, we construct them as follows.

Firm 1’s random (reservation) value U1 is distributed according to distribution G1:

G1 (u) ≡ ℙ (U1 ≤ u) =
1

�1 − c
u − 1, on [�1 − c, 2 (�1 − c)] ,

45



where for each u ∈ [�1 − c, 2 (�1 − c)], the distribution over posteriors, Fu, is the binary distribution

with support {2 (�1 − c) − u, u + 2c}. In turn, Firm 2’s random (reservation) value U2 is distributed

according to distribution G2.

G2 (u) ≡ ℙ (U2 ≤ u) =
1

�1 − c
u − 1, on [�1 − c, 2 (�1 − c)] ,

where for each u ∈ [�1 − c, 2 (�1 − c)], Fu is given by the ternary distribution

Fu =
⎧⎪⎪
⎨⎪⎪⎩

0 b(u) a(u)

1 − �2−c
�1−c

�2−c
2(�1−c)

�2−c
2(�1−c)

⎫⎪⎪
⎬⎪⎪⎭
, where a(u) ≡ u + 2c

�1 − c
�2 − c

and b(u) ≡ 2 (�1 − c) − u.

Recall that the top row of the matrix is the support of the distribution and the bottom row the

associated probability weights (the pmf). Evidently, these constructions yield the desired distri-

butions over e�ective values.

■

Lemma B.3. If �2 ≤ 1/2 and 2 (�1 − c) > 1 − c/�2 > �1 − c, there is an equilibrium in which �rm 1

and �rm 2 choose distributions over e�ective values H1 and H2, respectively, where

H1 (w) = 2(1 −
�2 (�1 − c)
�2 − c )

�2
�2 − c

w, on [0,
�2 − c
�2 ] ,

and

H2 (w) = 1 − 2�2 + 2�2
�2

�2 − c
w, on [0,

�2 − c
�2 ] .

Proof. As above, it is easy to verify that these distributions are feasible, but remains to verify that

they are inducible. To that end, we construct them as follows.

Firm 1’s random (reservation) value U1, is distributed according to distribution G1:

G1 (u) ≡ ℙ (U1 ≤ u) = 4
�2

�2 − c (
1 −

�2 (�1 − c)
�2 − c ) (u − (�1 − c)) , on [�1 − c,

�2 − c
�2 ] ,

where for each u ∈ [�1 − c, 1 − c/�2), Fu is binary with support {b (u) , a (u)}, where a (u) ≡ u + 2c

and b (u) ≡ 2 (�1 − c) − u; and F �2−c
�2
(x) is de�ned as

F �2−c
�2
(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

2(�1−c−
�2−c
�2 )

3(
�2−c
�2 )

2
−8(�1−c)

�2−c
�2

+4(�1−c)2
x if x ∈ [0, 2 (�1 − c) −

�2−c
�2 ]

1 − (
�2−c
�2
+ 3c − 2(�1−c)�2

�2−c
c) if x ∈ [2 (�1 − c) −

�2−c
�2
, �2−c�2

+ 3c − 2(�1−c)�2
�2−c

c)

1, if x ∈ [
�2−c
�2
+ 3c − 2(�1−c)�2

�2−c
c, 1]

.
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Viz., F �2−c
�2
(x) has a point mass of size

�2−c
�2

3 �2−c�2
− 2 (�1 − c)

on �2 − c
�2

+ 3c −
2 (�1 − c) �2
�2 − c

c.

Evidently, a is increasing in u and takes values in the interval [�1 + c, 1 − c/�2 + 2c]; and b is

decreasing in u and takes values in the interval [�1 − c, 2 (�1 − c) − 1 + c/�2]. We should verify

four things:

Claim B.4. The upper bound of a(u) is less than 1, i.e., 1 − c/�2 + 2c ≤ 1.

Proof. Directly,
�2 − c
�2

+ 2c = 1 −
c
�2
+ 2c ≤ 1 − 2c + 2c = 1,

since �2 ≤ 1
2 . ■

Claim B.5. 3c − 2 (�1 − c) �2c/ (�2 − c) ≤ 2c.

Proof. This holds if and only if

1 ≤
2 (�1 − c) �2
�2 − c

⇔
�2 − c
�2

≤ 2 (�1 − c) ,

which holds by assumption. ■

Claim B.6. F �2−c
�2
(x) does not have support above 1, i.e., 1 − c/�2 + 3c − 2 (�1 − c) �2c/ (�2 − c) ≤ 1.

Proof. Directly,
�2 − c
�2

+ 3c −
2 (�1 − c) �2
�2 − c

c ≤
�2 − c
�2

+ 2c ≤ 1,

where the �rst inequality follows from Claim B.5, and the second inequality from Claim B.4. ■

Claim B.7.
�2 − c
�2

+ 3c −
2 (�1 − c) �2
�2 − c

c >
�2 − c
�2

≥ 2 (�1 − c) −
�2 − c
�2

.

Proof. The right hand inequality holds since 1 − �2/c ≥ �1 − c. Now the left-hand inequality:

�2 − c
�2

+ 3c −
2 (�1 − c) �2
�2 − c

c ≥
�2 − c
�2

+
3 (�1 − c) �2
�2 − c

c −
2 (�1 − c) �2
�2 − c

c >
�2 − c
�2

,

since 1 − c/�2 ≥ �1 − c. ■
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Note that for the special sub-case where 2 (�1 − c) − (�2 − c) ≥ 1 − c/�2 > �1 − c, the distribution

over e�ective values can also be generated by a pure strategy distribution over values F ∗, where

F ∗ (x) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

2 �2
�2−c (1 −

(�1−c)�2
�2−c ) x if x ∈ [0,

�2−c
�2 ]

2(1 −
(�1−c)�2
�2−c ) if x ∈ [

�2−c
�2
, �2−c�2

+ c(�2−c)
2(�1−c)�2−(�2−c))

1 if x ∈ [
�2−c
�2
+ c(�2−c)

2(�1−c)�2−(�2−c)
, 1]

.

It su�ces to check

�2 − c
�2

+
c (�2 − c)

2 (�1 − c) �2 − (�2 − c)
≤ 1 ⇔ 2 (�1 − c) − (�2 − c) ≥ 1 −

c
�2
.

Firm 2’s random (reservation) value U2, is distributed according to distribution G2:

G2 (u) ≡ ℙ (U2 ≤ u) =
2�2
�2 − c

u − 1, on [
�2 − c
2�2

,
�2 − c
�2 ] ,

where for each u ∈ [1/2 − c/ (2�2) , 1 − c/�2], Fu is given by the ternary distribution

Fu =
⎧⎪⎪
⎨⎪⎪⎩

0 b(u) a(u)

1 − 2�2 �2 �2

⎫⎪⎪
⎬⎪⎪⎭
, where a(u) ≡ u +

c
�2

and b(u) ≡
�2 − c
�2

− u.

■

Lemma B.8. If �2 ≥ 1/2 and 1 − �2/c ≥ �1 − c, there is an equilibrium in which �rm 1 chooses the

binary distribution over e�ective values with support {0, 1 − c/�2}, and �rm 2 chooses the distribution

over e�ective values H2 (w), where

H2(w) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

(1−�2)2

�2 (
w
�2−c) if w ∈ [0, �2 − c)

�2
�2−c

w if w ∈ [�2 − c, 1 −
c
�2 ]

1 if w ≥ 1 − c
�2

.

Proof. Firm 1 induces its e�ective-value distribution by choosing the binary distribution over pos-

teriors with support {0, �1 (�2 − c) / (�2 (�1 − c))}, and �rm 2 induces its e�ective-value distribution

by choosing distribution G2 over reservation values:

G2 (u) ≡ ℙ (U2 ≤ u) =
u

�2 − c
−
1 − �2
�2

on [�2 − c,
�2 − c
�2 ] ,

where for each u ∈ [�2 − c, 1 − c/�2], Fu is binary with support {(�2 − c − �2u) / (1 − �2) , u + c/�2}.

■
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B.2 Proof of Proposition 6.3

The development of this result mirrors that for the no outside option case and follows from a

sequence of lemmata.

Lemma B.9. Suppose n ≥ 3 and the consumer’s outside option is relevant, i.e., u0 > 0. Denote by

H a symmetric-equilibrium distribution of e�ective values chosen by each �rm, let � ∈ [0, 1] be the

probability that a �rm o�ers full information, and let Û ≡ sup (supp (H ) /
{
Ū
}
). Then the payo�

function in e�ective values facing each individual �rm must have a linear structure that is either

semi-linear:

Π (w;H ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if w = [0, u0)

(� (1 − �))n−1 + (1−��)n−1−(�(1−�))n−1

Û−u0
× (w − u0) if w ∈ [u0, Û ]

(1 − ��)n−1 if w ∈ (Û , Ū )
1−(1−��)n

n�� if w = Ū

, (19)

with (� (1 − �))n−1 /u0 > [(1 − ��)n−1 − (� (1 − �))n−1] /(Û − u0); or fully-linear:

Π (w;H ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if w = [0, u0)

(1 − ��)n−1 × w
Û

if w ∈ [u0, Û ]
(1 − ��)n−1 if w = (Û , Ū)

1 if w = Ū

. (20)

Proof. The linearity of the equilibrium payo� function over(u0, Û) can be shown by an argument

similar to that of Lemma 4.2 after trivial adaptation, and is thus omitted. ■

The symmetric equilibrium distribution of e�ective values can thus be characterized by pa-

rameters � and Û , as well as whether it induces a payo� function with a semi-linear form (19), or

a fully-linear form (20). The following lemma shows that these parameters are uniquely pinned

down via the dependence of the equilibrium payo� on the atom assigned to e�ective value 0.

LemmaB.10. Suppose n ≥ 3, and let �FD be the unique solution to equation 1−(1 − �)n = n (1 − �)n−1.

The symmetric equilibrium distribution of e�ective values is unique, and its form depends on the

average quality � and the outside option u0 as follows.

49



(i) If � ≥ �FD , the equilibrium has full disclosure for all u0 > 0.

(ii) For each � ∈ (1/n, �FD), there are cuto�s uL0 and uFD0 such that the equilibrium payo� function

necessarily takes the semi-linear form if u0 < uL0 , takes the fully-linear form if u0 ∈ [uL0 , uFD0 ), and

has full disclosure if u0 ≥ uFD0 .

(iii) For each � ≤ 1/n, there is a cuto� uFD0 such that the equilibrium payo� function necessarily

takes the fully-linear form if u0 < uFD0 and has full disclosure if u0 ≥ uFD0 .

Proof of Lemma B.10. Consider �rst the case of full disclosure in equilibrium. If all other �rms

are fully revealing, the expected payo� of a �rm by following suit is (1 − (1 − �)n) /n. The optimal

deviation is either a distribution with support {
̄
U } (if u0 ≤

̄
U ) or one with support {0, u0} (if

u0 > ̄
U ), with respective payo�s (1 − �)n−1 and (1 − �) ×

̄
U /u0. Therefore, full disclosure can arise

in equilibrium if and only if

1 − (1 − �)n

n
≥ (1 − �)n−1 × min

{
1, ̄
U
u0

}
. (21)

Recall that �FD is the unique solution to equation 1 − (1 − �)n = n (1 − �)n−1. Inequality (21) holds

whenever � ≥ �FD regardless of u0. When � < �FD , inequality (21) holds if and only if u0 is

su�ciently large; speci�cally:

u0 ≥
n (1 − �)n−1

1 − (1 − �)n
× (� − c) ≡ uFD0 (�) .

Note that uFD0 is hump-shaped with uFD0 (c) = uFD0 (1) = 0. Therefore, for each u0 ∈ (0, Ū ), full

disclosure can be sustained as an equilibrium either if � is su�ciently large or if � is su�ciently

small.

We now move onto partial disclosure equilibrium. Denote by v the equilibrium payo� of an

individual �rm, and by � ∈ (0, 1 − �) the atom at 0 that an individual �rm assigns in its e�ective-

value distribution. The two variables are related by

v =
1 − �n

n
. (22)

Suppose the equilibrium takes the semi-linear form. In this case, reservation value Ū is on

the support and must deliver the equilibrium payo� v. Moreover, the atom � at 0 is due only to

reservation value Ū , and hence is equal to � (1 − �). These two facts imply

v = (1 − �)
1 − (1 −

�
1−��)

n

n�
. (23)
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Equating (22) and (23) give an equation in � , which has a unique solution in the interval (0, 1 − �)

if and only if � > n−1. To see this, note that the RHS of (22) is decreasing and concave in � and

equal to 1/n at � = 0, whereas the RHS of (23) is decreasing and convex in � and equal to � at

� = 0. Moreover, it is straightforward to verify that the RHS of the two equations coincide when

� = 1 − �.

Suppose � > n−1 and denote the unique solution (in the interval � ∈ (0, 1 − �)) to the system

of equations (22) and (23) above by (v̂, �̂). Suppose further that u0 ≤ ̄
U . As Π

̄
U (w) = Π̂

̄
U (w)

for all w ∈ [u0, ̄
U ] (otherwise, this interval of e�ective values would not be on the support of the

equilibrium distribution), it is necessary that

�̂n−1

u0
≥
v̂

̄
U

⇔ u0 ≤
�̂n−1

v̂ ̄
U ≡ uL0 (�) .

It is noteworthy that uL0 (�) equals 0 at � = n−1, equals �FD − c at � = �FD , and is increasing in �.

Moreover, it can be shown that v̂ ≥ �̂n−1, so that uL0 (�) ≤ ̄
U . In sum, the equilibrium can take the

semi-linear form only if � > n−1 and u0 ≤ uL0 (�). In this case, � = �̂ ≡ �̂/ (1 − �) and

Û − u0 =
(1 −

��̂
1−�)

n−1
− �̂n−1

v̂ − �̂n−1
(
̄
U − u0) . (24)

The requirement u0 ≤ uL0 (�) ensures that (�(1−�))n−1

u0
> (1−��)n−1−(�(1−�))n−1

Û−u0
holds. We wish to estab-

lish that Û ≤ Ū . To this end, it su�ces to focus on the case u0 = 0, as Û stated above is decreasing

in u0. As v̂ and �̂ are obtained by solving the system (22) and (23), the inequality Û ≤ Ū can be

stated as
1 − (1 − ��̂)n

n
≥ ��̂ (1 − ��̂)n−1 + (�̂ (1 − �))n , (25)

where �̂ is implicitly given by �̂ (�̂ (1 − �))n + (1 − �̂) = (1 − ��̂)n. It follows from a change of

variable and straightforward algebra that (25) can be rewritten as

T (x) ≡
(
(1−x)xn−1+1
(1−xn) − 1

n)
−1

((
(1−x)xn−1+1
(1−xn) − 1

n)
−1
− 1 + x)

n

xn + (
(1−x)xn−1+1
(1−xn) − 1

n)
−1
− 1

≤ 1, (26)

where x = 1 − ��̂ .28 We show that (26) holds for all x ∈ [0, �FD] and n ≥ 3. It follows from direct

substitution that T (0) = 0 and T (�FD) = 1. It remains to show that T (x) is increasing. By direct

28Using the de�nition of �̂ , the inequality Û ≤ Ū can be written as �̂ ≤ (
(1−x)xn−1+1
(1−xn) − 1

n)
−1

. Moreover, the
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computation, T ′ (x) has the same sign as x3A (x) + xn+3B (x), where

A (x) = (1 − xn) (n − 1) − xn−2 (n2 − n + 1) (1 − x) + xn−1 (1 − x)

B (x) = 1 − xn−3 (2x − 1) (n + x − nx)

We show that both A (x) and B (x) are nonnegative over x ∈ [0, �FD]. First,

A′ (x) = n2xn−3 (1 − x)(x −
n3 − 3n2 + 3n − 2

n2 ) .

As (n3 − 3n2 + 3n − 2) /n2 exceeds �FD for all n ≥ 3, A (x) is decreasing. Moreover, A (0) = n−1 > 0

and A (1) = 0. Second,

B′ (x) = −2 (n − 1)2 xn−4 (1 − x)(x −
n (n − 3)
2 (n − 1)2)

Therefore, B is either increasing or inverted U-shaped. Moreover, B (0) = 1 and B (1) = 0.

Finally, consider equilibria that take the fully-linear form. With a full-linear payo� function,

the equilibrium payo� v is equal to Π̂ (
̄
U ), implying that

v =
�n−1

u0 ̄
U . (27)

If the full information equilibrium exists, i.e., (21) holds, the solution to the system of equations

(22) and (27) would have � > 1 − � and v < (1 − (1 − �)n) /n, eliminating this class of equilibria.

Therefore, for the rest of this proof, suppose (21) does not hold. It is clear that the system (22) and

(27) has a unique solution–denote it by (v̂, �̂). De�ne the probability of full information, �̂ , as

follows. If v̂ ≥ �, set �̂ = 0; otherwise, set �̂ to be the unique solution to v̂ = 1−(1−��)n

n� .29 Moreover,

full-linearity dictates that Û = (1 − �̂�)n−1 ×
̄
U /v̂. Evidently,

Û = (1 − ��)n−1 × ̄
U
v̂
=
(1 − ��)n−1
1−(1−��)n

n�

×
̄
U =

n� (1 − ��)n−1

(1 − (1 − ��)n)
×
̄
U ≤

1
�
×
̄
U = Ū ,

where the inequality follows from the fact that n� (1 − ��)n−1 / (1 − (1 − ��)n) is a decreasing func-

tion in n and is equal to �−1 at � = 0.

implicit de�nition of �̂ can transformed into xn + �̂ − 1 − �̂ (�̂ + x − 1)n = 0, yielding an inverse relation between

�̂ and x . Moreover, as the LHS of the last equation is increasing in �̂ , the inequality stated holds by substituting

�̂ = (
(1−x)xn−1+1
(1−xn) − 1

n)
−1

.
29Note that failure of (21) ensures that �̂ < 1.
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We �nish by verifying that a fully-linear payo� function with � = �̂ and Û chosen above

satis�es the necessary conditions for an equilibrium whenever � ≤ n−1 or u0 ≥ uL0 (�). To this

end, it su�ces to check that �̂ ≥ �̂ × (1 − �). The case of �̂ = 0 (v̂ ≥ �) is immediate, so consider

�̂ > 0. As the RHS of (22) is decreasing and concave in � , whereas the RHS of (23) is decreasing

and convex in � , either � ≤ n−1 or u0 ≥ uL0 (�) ensures that

v̂ ≥ (1 − �)
1 − (1 −

�
1−� �̂)

n

n�̂
. (28)

The fact that 1−(1−��)n

n� is decreasing in � , together with the de�nition v̂ = 1−(1−�̂�)n

n�̂ , implies that

�̂/ (1 − �) ≥ �̂ .

The analysis above covers all parameter con�gurations for any n ≥ 3, � ∈ (0, 1) and u0 ∈

(0, Ū ). ■

Similar to the no outside option case, the e�ective-value distributions characterized in Lem-

mata B.9 and B.10 can be generated by mixed strategies that involve randomization of binary

distributions over posteriors only.

Lemma B.11. The e�ective-value distribution H implied by the payo� function in Lemma 4.2, with

� and Û given by Lemma B.10, is inducible. Moreover, it can be generated by a mixed strategy

(G (⋅) , {FU (⋅)}U∈supp(G)) in which FU is binary for each U ∈ supp (G).

Proof of Lemma B.11. Consider �rst the case � ≤ n−1 and u0 ∈ [uL0 (�) , uFD0 (�)), so that the equi-

librium payo� function is fully linear. The e�ective-value distribution H implied by (20) has an

atom � at Ū , an atom (1 − ��) (u0Û )
1
n−1 at 0, and a density

ℎ (w) =
⎧⎪⎪
⎨⎪⎪⎩

0 if w < u0 and w = (Û , Ū ]
1−��

(n−1)Û
1
n−1
w− n−2n−1 if w ∈ [u0, Û ]

.

Below, we construct a mixed strategy that generates this e�ective value distribution. To this end,

de�ne a mapping b ∶ [ ̄
U , Û ] → [0,

̄
U ] by

K (b (U )) = K (U ) for U ≤ Ũ , and b (U ) = 0 for U ≥ Ũ ,

where K ∶ [0, Ū ] → ℝ is de�ned as K (w) ≡ (n
̄
U − w)w 1

n−1 , Ũ > u0 is de�ned implicitly by

K (Ũ ) = K (u0), and parameters � and Û are as given in Lemma B.10. For each U ∈ [ ̄
U , Û ],
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let FU be the binary distribution with support {b (U ) , U } and mean
̄
U and let FŪ be the binary

distribution with support
{
0, Ū

}
and mean

̄
U . Moreover, letG be a reservation-value distribution

that has an atom � ∈ [0, 1] at Ū and a density as follows:

g (U ) ≡
1 − ��

(n − 1) Û 1
n−1

U − b (U )

̄
U − b (U )

U − n−2n−1 , for U ∈ [ ̄
U , Û ] .

Below, we show that the mixed strategy (G, {FU (⋅)}U∈[ ̄U ,Û]∪{Ū})
generates the e�ective-value

distribution H de�ned above.

We need to establish that the e�ective-value distribution FU is inducible for each U ∈ [ ̄
U , Û ]∪{

Ū
}

. First, the mapping b is well-de�ned: a direct computation reveals that K (w) is strictly

concave with its peak at
̄
U . Moreover, we can show that b (U ) ≤ ā (U ) ≡ �−c−�U

1−c−U (as de�ned in

Lemma 3.6). For this purpose, it is without loss to suppose u0 = 0, as b (U ) de�ned above is

weakly decreasing in u0. Because ā (
̄
U ) = b (

̄
U ), b (Û) = 0 = ā (Ū ) ≤ ā (Û), and ā (U ) is

decreasing and strictly concave, it su�ces to show that b (U ) is convex. To this end, we adopt a

change of variable: let v = U −
̄
U , and d (v) =

̄
U − b (

̄
U + v). The implicit de�nition of b implies

K (
̄
U + v) = K (

̄
U − d (v)), or equivalently,

(
̄
U + v)

1
n−1 ((n − 1)

̄
U − v) = (

̄
U − d (v))

1
n−1 ((n − 1)

̄
U + d (v)) .

The rest of the argument coincides with that in Lemma 4.4 (after replacing M with
̄
U ).

We now check that the mixed strategy generates an e�ective-value distribution coinciding

with H stated above. For w ∈ [ ̄
U , Ũ ], the density implied by the mixed strategy is

g (w) × ̄
U − b (w)
w − b (w)

=
1 − ��

(n − 1) Û 1
n−1

w − b (w)

̄
U − b (w)

w− n−2n−1 × ̄
U − b (w)
w − b (w)

= ℎ (w) .

For w ∈ [Ũ , Û ], the density implied by the mixed strategy is

g (w) × ̄
U
w
=

1 − ��
(n − 1) Û 1

n−1

w

̄
U
w− n−2n−1 × ̄

U
w
= ℎ (w) .

De�ne q ∶ [0,
̄
U ]→ [ ̄

U , Û ] as the inverse mapping of b. For w ∈ [u0, ̄
U ], the density implied by
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the mixed strategy is

−q′ (w) ×
q (w) −

̄
U

q (w) − w
× g (q (w))

= −
K ′ (w)

K ′ (q (w))
×
q (w) −

̄
U

q (w) − w
× g (q (w))

= −
n
n−1 ( ̄

U − w)w 1
n−1−1

n
n−1 ( ̄

U − q (w)) q (w)
1
n−1−1

×
q (w) −

̄
U

q (w) − w
×

1 − ��
(n − 1) Û 1

n−1

q (w) − w

̄
U − w

q (w)−
n−2
n−1

=
w 1

n−1−1

q (w)
1
n−1−1

× ̄
U − w

q (w) − w
×

1 − ��
(n − 1) Û 1

n−1

q (w) − w

̄
U − w

q (w)−
n−2
n−1

=
1 − ��

(n − 1) Û 1
n−1
× w− n−2n−1 = ℎ (w) .

The atom at 0 is given by

� (1 − �) + ∫
Û

Ũ (1 − ̄
U
U ) dG (U ) = � (1 − �) + ∫

Û

Ũ (1 − ̄
U
w) ×(

1 − ��
(n − 1) Û 1

n−1

w

̄
U
w− n−2n−1

) dw

= � (1 − �) +
1 − ��
n
̄
U Û 1

n−1
(−(n ̄

U − Û) Û
1
n−1 + (n ̄

U − Ũ ) Ũ
1
n−1)

= � (1 − �) +
1 − ��
n
̄
U Û 1

n−1
(−(n ̄

U − Û) Û
1
n−1 + (n

̄
U − u0) u

1
n−1
0 )

= � (1 − �) + (1 − ��)(−(1 −
(1 − ��)n−1

nv ) +(1 −
�n−1

nv )
�

1 − ��)

= � +
(1 − ��)n − �n − (1 − �) nv

nv
= � .

where the �rst equality uses the de�nition of g, the third equality uses the de�nition of Ũ , the

fourth equality uses the linearity of the payo� function: v/
̄
U = �n−1/u0 = (1 − ��)n−1 /Û , and the

last equality uses the fact that v = 1−�n
n and v = 1−(1−��)n

n� (in the case � > 0).

Consider next the case � > n−1 and u0 ∈ [0, uL0 (�)), so that the equilibrium payo� function

is semi-linear. The e�ective-value distribution H implied by (19) has an atom � at Ū , an atom

� (1 − �) at 0, and a density

ℎ (w) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0 if w < u0 and w = (Û , Ū ]
(1−��)n−1−(�(1−�))n−1

(n−1)(Û−u0) ((� (1 − �))
n−1 + (1−��)n−1−(�(1−�))n−1

Û−u0
(w − u0))

− n−2n−1
if w ∈ [u0, Û ]

.

De�ne a mapping b ∶ [ ̄
U , Û ] → [0,

̄
U ] by K (b (U )) = K (U ), where K ∶ [0, Ū ] → ℝ is given
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by

K (w) ≡ ((� (1 − �))
n−1 +

(1 − ��)n−1 − (� (1 − �))n−1

Û − u0
(w − u0))

1
n−1

×
(
n
̄
U − (n − 1) u0 + (n − 1)(

(1 − ��)n−1 − (� (1 − �))n−1

Û − u0 )

−1

(� (1 − �))n−1 − w
)

,

and parameters � and Û are as given in Lemma B.10. For each U ∈ [ ̄
U , Û ], let FU be a binary

distribution with support {b (U ) , U } and mean
̄
U , and let FŪ be the binary distribution with

support
{
0, Ū

}
and mean

̄
U . Moreover, let G be a reservation-value distribution, which has an

atom � ∈ [0, 1] at Ū , and a density as follows:

g (U ) ≡ (1−��)n−1−(�(1−�))n−1

(n−1)(Û−u0) ((� (1 − �))
n−1 + (1−��)n−1−(�(1−�))n−1

Û−u0
(U − u0))

− n−2n−1

×U−b(U )
̄
U−b(U ) , for U ∈ [ ̄

U , Û ] .

We need to establish that e�ective-value distribution FU is inducible for each U ∈ [ ̄
U , Û ] ∪{

Ū
}

. First, the mapping b is well-de�ned: a direct computation reveals that K (w) is strictly

concave with its peak at
̄
U and that K (Û) = K (u0). Moreover, we can show that b (U ) ≤ ā (U ) ≡

�−c−�U
1−c−U (as de�ned in Lemma 3.6). To this end, note that because ā (

̄
U ) = b (

̄
U ), b (Û) = u0 ≤

ā (Û), 30 and ā (U ) is decreasing and strictly concave, it su�ces to show that b (U ) is convex. To

this end, we adopt a change of variable: let v = U −
̄
U , and d (v) =

̄
U − b (

̄
U + v). The implicit

de�nition of b implies K (
̄
U + v) = K (

̄
U − d (v)), or equivalently,

(L + v)
1
n−1 ((n − 1) L − v) = (L − d (v))

1
n−1 ((n − 1) L + d (v)) ,

where L ≡ (
̄
U − u0) +

(Û−u0)(�(1−�))n−1
(1−��)n−1−(�(1−�))n−1 . The rest of the argument coincides with that in Lemma 4.4

(after replacing M with L).

Let us now check that the mixed strategy generates an e�ective-value distribution coinciding
30The reason is as follows. The derivation in Lemma B.10 reveals that Û ≤ Ū in this parameter range, including

the case u0 = 0, so b−1 (0) ≤ Ū . Moreover, we have established in the case of the fully-linear equilibrium above that

b (Û) ≤ ā (Û) holds at u0 = uL0 (�), so b−1 (uL0 (�)) ≤ ā−1 (uL0 (�)). Furthermore, for all u0 ∈ [0, uL0 (�)), Û varies

linearly with u0. Together with the fact that ā is strictly concave, we have b−1 (u0) < ā−1 (u0) for all u0 ∈ [0, uL0 (�)).
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with H stated above. For w ∈ [ ̄
U , Û ], the density implied by the mixed strategy is

g (w) × ̄
U − b (w)
w − b (w)

=
(1 − ��)n−1 − (� (1 − �))n−1

(n − 1)(Û − u0)
((� (1 − �))

n−1 +
(1 − ��)n−1 − (� (1 − �))n−1

Û − u0
(w − u0))

− n−2n−1

×(
w − b (w)

̄
U − b (w))( ̄

U − b (w)
w − b (w))

= ℎ (w) .

Let q be the inverse mapping of b. For w ∈ [u0, ̄
U ], the density implied by the mixed strategy is

−q′ (w) ×
q (w) −

̄
U

q (w) − w
× g (q (w))

= −
K ′ (w)

K ′ (q (w))
×
q (w) −

̄
U

q (w) − w
× g (q (w))

= −
(
̄
U − w)((� (1 − �))

n−1 + (1−��)n−1−(�(1−�))n−1

Û−u0
(w − u0))

− n−2n−1

(
̄
U − q (w))((� (1 − �))

n−1 + (1−��)n−1−(�(1−�))n−1

Û−u0
(q (w) − u0))

− n−2n−1
×
q (w) −

̄
U

q (w) − w
× g (q (w))

=
(1 − ��)n−1 − (� (1 − �))n−1

(n − 1)(Û − u0)
((� (1 − �))

n−1 +
(1 − ��)n−1 − (� (1 − �))n−1

Û − u0
(w − u0))

− n−2n−1

= ℎ (w) .

■

B.3 Proof of Corollary 6.4

(i) Fix a u0 < �FD − c and let �∗ be the unique solution to uL0 (�) = u0. We will show that the �rm’s

equilibrium pro�t is increasing in � when the equilibrium takes the fully linear form (i.e., � < �∗)

and is decreasing in � when the equilibrium takes the semi-linear form.

Consider �rst the case where the equilibrium payo� is fully linear. Recall from the proof of

Lemma B.10 that the �rm’s equilibrium pro�t v is jointly determined by (22) and (27). As the

RHS of (22) is decreasing in � and the RHS of (27) is increasing in � , and because an increase in

� shifts up the RHS of (27), the implied equilibrium payo� v is therefore increasing in �.

Consider next the case where the equilibrium payo� is semi-linear. Recall from the proof of

Lemma B.10 that the �rm’s equilibrium pro�t v and the atom � at the bottom is jointly determined
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by equating (22) and (23), i.e., T (�, �) = 0, where

T (�, �) ≡ (1 − �)
1 − (1 −

�
1−��)

n

n�
−
1 − �n

n
.

It is straightforward to verify that T is strictly convex in � , is positive at � = 0 and equals

0 at � = 1 − �. The root that is smaller than 1 − � thus gives the equilibrium value of � . It is

immediate that T is increasing in �, and so is the equilibrium value of � .31 As the equilibrium

payo� is decreasing in � (recall (22)), it is also decreasing in �.

(ii) It is immediate from the proof of Lemma B.10 that the search cost c has no impact on the

�rm’s pro�t v if the equilibrium payo� function is semi-linear, or if the equilibrium involves full

disclosure. In the case of a fully-linear equilibrium payo�, v is jointly determined by (22) and

(27). It is immediate that (22) is independent of c whereas the RHS of (27) is decreasing in c. An

increase in c thus lowers the equilibrium value of v.
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International Journal of Industrial Organization, 61, 09 2018.

Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. The American Economic Review,

101(6):2590–2615, 2011.

F. Koessler, M. Laclau, and T. Tomala. Interactive information design. Mimeo, May 2017.

Robert Marquez. Competition, adverse selection, and information dispersion in the banking in-

dustry. The Review of Financial Studies, 15(3):901–926, 2002.

Doron Ravid. Ultimatum bargaining with rational inattention. American Economic Review, 110

(9):2948–63, September 2020.

Anne-Katrin Roesler and Balazs Szentes. Buyer-optimal learning and monopoly pricing. Ameri-

can Economic Review, 107(7), 7 2017.

Ran Spiegler. Competition over agents with boundedly rational expectations. Theoretical Eco-

nomics, 1(2):207–231, 2006.

Dale O. Stahl. Oligopolistic pricing with sequential consumer search. The American Economic

Review, 79(4):700–712, 1989.

Martin L. Weitzman. Optimal search for the best alternative. Econometrica, 47(3):641–654, 1979.

Mark Whitmeyer. Dynamic competitive persuasion. Mimeo, 2018.

Mark Whitmeyer. Persuasion produces the (diamond) paradox. Mimeo, 2020.

Asher Wolinsky. True Monopolistic Competition as a Result of Imperfect Information*. The

Quarterly Journal of Economics, 101(3):493–511, 08 1986.

Kai Hao Yang. Buyer-optimal information with nonlinear technology. Mimeo, June 2019.

60


	Introduction
	Related Work

	The Model
	Preliminary Analysis
	Basics
	The Full Information Equilibrium
	Reformulating the Game and Main Analysis
	Finding the Optimal Inducible Effective-Value Distribution by Concavification


	The Symmetric Equilibrium in Competition over Effective Values
	Two Benchmarks
	Costless Signal Realizations
	Hidden Signals

	Extensions
	Asymmetric Equilibria
	Two Heterogeneous Firms
	Relevant Outside Option

	Discussion and Concluding Remarks
	Sections 3, 4, and 5 Proofs
	Proof of Lemma 3.2
	Proof of Proposition 3.3
	Proof of Lemma 3.6
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Corollary 4.6
	Proof of Proposition 5.1
	Proof of Proposition 6.1

	Section 6 Proofs
	Proof of Theorem 6.2
	Proof of Proposition 6.3
	Proof of Corollary 6.4


