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Abstract

We introduce the contraction rule for updating ambiguous beliefs. With

the rule, a realized event renders an individual’s belief unambiguous when and

only when the event has small ambiguity. The contraction rule is continuous

and insensitive to priors that are less likely given the information. The

contraction posterior set is independent of the order in which multiple pieces

of information arrive. We axiomatize the rule and show that it accommodates

recent experimental findings on updating ambiguous information and has

robust predictions on individual learning.
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1 Introduction

In decision theory, the term ambiguity refers to the situation in which states of the
world have no objective probability distribution. Since the seminal work of Knight
(1921), Keynes (1921), and Ellsberg (1961), a variety of models have been proposed
to rationalize decision makers’ (henceforth DM) choices over bets on ambiguous
states.1 In contrast, relatively few papers focus on updating ambiguous beliefs.
The growing literature on incorporating ambiguous information into interactive
decisions has highlighted the importance of the latter topic.2

As in most applications of ambiguity, the DM is a max-min expected utility
maximizer (Gilboa and Schmeidler, 1989): she has a set of priors over states of the
world and evaluates each prospect according to its minimal expected utility over
all her priors. The set of priors, uniquely identified through the DM’s choices, is
considered as the DM’s belief set. In this paper, we offer a new belief updating rule
that revises the DM’s prior set to her posterior set when new information arrives.

Two updating rules, Full-Bayesian rule (also known as the prior-by-prior rule,
henceforth FB) and Maximum Likelihood (also known as the Dempster-Shafer
rule, henceforth ML), are most frequently used in updating ambiguous beliefs. A
common consequence of FB and ML is that information may dilate the DM’s payoff-
relevant set of beliefs and thus increase her payoff-relevant ambiguity.3 The dilation
of belief sets may occur even when there is no ex ante payoff-relevant ambiguity
(Wasserman and Kadane, 1990). Shishkin and Ortoleva (2021) (henceforth SO21)
experimentally test this prediction and find that ambiguity averse subjects typically
do not dilate their payoff-relevant belief sets after receiving ambiguous information.
This finding is inconsistent with both FB and ML. Our new updating rule, the
contraction rule, does not create dilation of belief sets when the DM has no ex
ante payoff-relevant ambiguity. In Section 4.1, we provide generic conditions under

1 See, for instance, Gilboa and Schmeidler (1989), Schmeidler (1989), Maccheroni, Marinacci,
and Rustichini (2006), Chew and Sagi (2008), Gul and Pesendorfer (2014), etc.

2See, for instance, Bose and Renou (2014), Beauchêne, Li, and Li (2019), and Chen (2021),
etc.

3Shishkin and Ortoleva (2021) consider the case in which there is an urn containing 50 red
balls and 50 blue balls, and a ball is randomly drawn from the urn. The color of the drawn ball
determines the DM’s final payoff. They show that if a DM, who initially does not observe the
color of the drawn ball (so she initially has a flat prior over the color), is provided with a signal
that indicates the color of the drawn ball but can be true or false with unknown probabilities,
then the DM’s posterior set over the color of the drawn ball can strictly contain the flat prior
under both FB and ML.
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which the contraction rule does not create belief dilation (Proposition 6).

To see how our updating rule works, consider the following example. There is
an investor who is deciding whether to buy a stock or not. The investor believes
that there is an equal chance for the stock price to go up (U) or down (D), where
U and D denote the two states respectively. The investor consults an expert
who knows perfectly about the true state. Nevertheless, the investor is uncertain
about whether the expert tells her the truth or not: she believes that the maximal
probability for the expert to lie is equal to the maximal probability for the expert
to tell the truth.

Suppose that the expert tells the investor that the stock price would go up.
Intuitively, this suggestion can be interpreted symmetrically in two contradicting
ways, depending on whether the expert is telling the truth or not. Note also that
the investor has an unambiguous prior over the stock price and thus there is no ex
ante ambiguity to be resolved by the information. As a result, the investor should
ignore the suggestion of the expert and maintain her initial belief.

We note that both FB and ML have inconsistent predictions with the intuition
above. By FB or ML, the investor becomes more confused given the suggestion and
her belief is rendered ambiguous. In contrast, the contraction rule has consistent
predictions with the intuition above. Given the expert’s suggestion, an investor
who follows the contraction rule would evaluate the maximal likelihoods of U and
D separately: U is mostly likely when the expert is telling the truth and D is
mostly likely when the expert is lying. The maximal joint probability of state U
with the expert’s suggestion is equal to that of state D with the suggestion. The
contraction rule maintains the ratio of the two maximal probabilities and leads to
a flat posterior in this example.

With the contraction rule, whether the information resolves the DM’s ambiguity
or not depends on the degree of ambiguity on the realized event. Specifically, let
S be the state space and let a set of priors P over S be the DM’s prior set. A
piece of information, also called an event, is a non-empty subset E of S. The
contraction measure, denoted by µP |E, is the one that assigns each state in E its
maximal ex ante probability, i.e., µP |E(s) = maxp∈P p(s) for each s ∈ E. We use
the sum ∑

s∈E µP |E(s) as an indicator of whether the degree of ambiguity on E

is large or not. When the degree of ambiguity on E is small (∑
s∈E µP |E(s) ≤ 1),

the realization of E resolves the DM’s ambiguity; the DM’s posterior maintains
the ratio of maximal ex ante likelihoods for each pair of states in E. When the
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degree of ambiguity on E is large (∑
s∈E µP |E(s) > 1), each prior in P is updated

towards the contraction measure; the DM’s ambiguity is not resolved.

We compare the contraction rule with the two benchmark rules, FB and ML, in
Section 2.3. With a stylized example, we show that the contraction rule moderates
FB and ML in the case where the realized event has large ambiguity: the FB
posterior set can be very sensitive to priors that assign near-zero probabilities to
the realized event while the contraction posterior set is almost not affected by those
priors; the ML completely disregards priors that do not maximize the probability of
the realized event while the contraction rule still updates those priors by assigning
less weights to them. We then show that the contraction rule satisfies continuity
while neither FB nor ML does. In Section 2.4, we further show that the contraction
posterior set is unaffected by the arrival order of multiple pieces of information.

In Section 3.1, we introduce evaluation functions. A function that maps states
of the world to payoffs is called an act. An evaluation function, V , maps each act
to its certainty equivalence and admits a max-min representation. Therefore, a
DM’s preference over acts can be described by an evaluation function, and her
beliefs can be uniquely identified from it.

In Section 3.2, we characterize the contraction rule through evaluation functions.
An updating rule Γ (defined over evaluation functions) specifies for each ex ante
evaluation function V and each event E an ex post evaluation function VE. Γ is
the contraction rule if VE identifies the contraction posterior set. We show that the
contraction rule can be fully characterized by axioms ambiguity-driven decreased
sensitivity after updating, independence of irrelevant states, mixture independence
without ambiguity, mixture ambiguity betweenness, and nonincreasing ambiguity
by information. While the last axiom, which says that information does not render
an unambiguous prior over payoff-relevant states ambiguous, is violated by FB, all
other axioms are satisfied by FB.

In Section 4, we provide several applications of the contraction rule. We first
study the empirical relevance of the rule with SO21 and Liang (2021) (henceforth
L21). We show that a large proportion of their experimental and empirical findings
can be addressed by the rule. Then we investigate the learning behavior of a
DM in a Wald-type experiment with ambiguous signals. We show that a DM
who updates according to the contraction rule learns the true state of the world
with probability close to one when provided with a sufficiently large number of
independent, informative, and ambiguous signals.
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Related Literature. One stream of literature studies how DMs update ambiguous
beliefs and the associated economic implications (e.g., Epstein and Schneider (2007,
2008)). Proposed by Jaffray (1988), FB is analyzed by Wasserman and Kadane
(1990) and Jaffray (1992) and axiomatized by Pires (2002). Introduced by Dempster
(1967) and Shafer (1976), ML is axiomatized by Gilboa and Schmeidler (1993) and
Cheng (2022). This paper contributes to the literature by providing the axiomatic
foundation for a new updating rule that does not create belief dilation under
generic conditions. Similar to the new updating rules proposed by Kovach (2021)
and Cheng (2022), both of which nest FB and ML, the contraction rule moderates
FB and ML when ambiguity is not fully resolved. While FB updates each prior
equally and ML only updates the most likely priors, the contraction rule updates
each prior but assigns less weight to those that are less likely. Our approach ensures
the continuity of the contraction rule, which is violated by both FB and ML.

Two specific streams of theoretical literature on updating ambiguous beliefs are
worth noting. The first one is about dynamic consistency.4 Epstein and Schneider
(2003) show that dynamic consistency is maintained when the DM has “rectangular”
sets of priors and updates according to FB. Hanany and Klibanoff (2007, 2009)
introduce the dynamic consistency updating rule. Following this rule, the DM
figures out an optimal contingent plan based on information she might obtain and
updates her beliefs in such a way that her ex post self finds it optimal to follow the
contingent plan. The dynamic consistency updating rule violates consequentialism
as the ex post beliefs of the DM may depend on unrealized parts of the choice
problem. Since the contraction rule updates each prior set to some posterior set
supported in the realized event, it satisfies consequentialism and violates dynamic
consistency.

Another stream of literature concerns the martingale property of updating
ambiguous beliefs. One distinctive paper in this line is by Gul and Pesendorfer
(2021), in which they introduce the proxy rule. The core axiom that features the
proxy rule is “not all news is bad news”: given a prospect and a set of potentially
realized signals, there exits one signal of which the realization does not decrease
the DM’s evaluation of the prospect. Similarly, under generic conditions, the
contraction rule does not lead to belief dilation, which implies that “a piece of
news cannot be bad for all prospects”. That is, the realization of a signal has
to weakly increase the DM’s evaluation towards at least one uncertain prospect.

4See Gilboa and Marinacci (2013) for a comprehensive survey.
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In addition, both our rule and the proxy rule predict that information does not
render the DM’s unambiguous payoff-relevant belief ambiguous. The contraction
rule differs from the proxy rule in the preference domain in which the two rules
are applied: the proxy rule is used to update max-min preferences that allow for
totally monotone capacities, and the contraction rule can be used for updating
general max-min preferences.5

A variety of experimental studies directly test how subjects react to ambiguous
information, including Cohen, Gilboa, Jaffray, and Schmeidler (2000), Dominiak,
Duersch, and Lefort (2012), Ert and Trautmann (2014), Moreno and Rosokha
(2015), Kellner, Le Quement, and Riener (2019), Epstein and Halevy (2021), etc.
A key contribution of our model is to provide consistent predictions with the
experimental and empirical findings by SO21 and L21. In particular, we show that
the contraction rule does not render the DM’s unambiguous payoff-relevant belief
ambiguous (SO21) and predicts under-reaction to ambiguous information (L21).
There are other findings by SO21 and L21 that can also be accommodated by our
model, which are discussed in Sections 4.1 and 4.2.

A recently emerging stream of literature applies ambiguous information to
interactive decisions among multiple players such as Blume and Board (2014), Bose
and Renou (2014), Kellner and Le Quement (2017), Kellner and Le Quement (2018),
Beauchêne, Li, and Li (2019), Chen (2021), etc. Since the two most commonly
adopted rules (FB and ML) create dilation of belief sets, the contraction rule can
be considered as an alternative approach for those applications to disentangle the
implications by belief dilation from those by other features of ambiguity.

The rest of the paper is organized as follows. We present the contraction rule
in Section 2 and characterize it in Section 3. Section 4 contains all applications of
our model. All omitted proofs and examples can be found in Appendix A, and a
characterization of FB is provided in Appendix B.

5For instance, in the Online Appendix A of SO21, they show that the set of priors satisfying
their assumptions cannot induce a totally monotone capacity. Thus the proxy rule cannot be
directly applied to accommodate their findings.
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2 Model

2.1 Preliminary

Let S be the state space that contains infinite states. Let M(S) be the set of
all measures over S that have finite supports, i.e., a measure π is an element of
M(S) if and only if there exists finite Ŝ ⊆ S such that π(S\Ŝ) = 0. Fix M to be
an arbitrary non-empty subset of M(S). M is finitely supported if there exists
finite Ŝ ⊆ S such that π(S\Ŝ) = 0 for all π ∈ M. If M is finitely supported and
supπ∈M π({s}) < +∞ for all s ∈ S, then the measure µM ∈ M(S) is defined such
that µM({s}) = supπ∈M π({s}) for each s ∈ S. µM is the lowest upper bound of
all measures in M. For any Ŝ ⊆ S and any π ∈ M(S), define π|Ŝ ∈ M(S) such
that (π|Ŝ)(E) = π(E ∩ Ŝ) for all E ⊆ S; let M|Ŝ = {π|Ŝ : π ∈ M}. For any
finite partition Π = {Si}n

i=1 of S and any π ∈ M(S), πΠ is defined as the measure
induced by π over the algebra generated by Π such that πΠ(Si) = π(Si) for each
i ∈ {1, ..., n}; let MΠ = {πΠ : π ∈ M}.

For any π, π′ ∈ M(S) and α, β ∈ R, if απ({s}) + βπ′({s}) ≥ 0 for all s ∈ S,
then define απ + βπ′ ∈ M(S) such that for each E ⊆ S, (απ + βπ′)(E) =
απ(E) + βπ′(E). This notion can be extended to two sets of measures such that
αM + βM′ = {απ + βπ′ : π ∈ M, π′ ∈ M′} if each απ + βπ′ is a well-defined
element in M(S). For any non-empty M ⊆ M(S), let co(M) be the convex
hull of M, i.e., π ∈ co(M) if and only if there exists a non-empty and finite set
{πi}n

i=1 ⊆ M and a set of non-negative numbers {αi}n
i=1 with ∑n

i=1 αi = 1 such
that π = ∑n

i=1 αiπi.

Let ∆(S) ⊆ M(S) be the set of all finitely supported probability measures
over S. We assume that all priors and posteriors of the DM are elements of ∆(S).
For any π ∈ M(S) with π(S) > 0, define π ∈ ∆(S) as the normalized probability
measure of π such that π(E) = π(E)

π(S) for all E ⊆ S. For any π, π′ ∈ M(S) with
π(S) ≤ 1 and π′(S) > 1, define Φ(π, π′) as the unique probability measure in
co({π, π′}), i.e.,

Φ(π, π′) = π′(S) − 1
π′(S) − π(S)π + 1 − π(S)

π′(S) − π(S)π
′.

A set of probability measures P is said to be convex if αp+ (1 −α)p′ ∈ P for all
p, p′ ∈ P and α ∈ [0, 1]. P is said to be closed if it is a closed subset of RS, where
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each p ∈ P is viewed as a vector in RS. Let S be the collection of non-empty,
finitely supported, convex, and closed sets of probability measures over S.

An event is a non-empty and finite subset of S. Let S be the collection of all
events. For any P ∈ P and any event E, E is P -non-null if there exists p ∈ P

such that p(E) > 0. E is P -null if it is not P -non-null.

Let K be the payoff space, which is an interval of R with non-empty interior.
An act is a function f : S → K, which maps each state to some payoff. We use
x ∈ K to denote the constant act that equals x everywhere. Let F denote the
set of all acts. For any act f and any p ∈ ∆(S), let Ep(f) = ∑

s∈S p(s)f(s); let
EP (f) = infp∈P Ep(f) for any non-empty P ⊆ ∆(S). For any two acts f and g

and any E ⊆ S, we write f ≥ g if f(s) ≥ g(s) for all s ∈ S, and write f =E g

if f(s) = g(s) for all s ∈ E. If for some s ∈ S, f(s) > g(s) and f =S\{s} g,
then we write f ▷s g. Let fEg denote the act that equals f on E and equals
g on S\E. For any α ∈ [0, 1], αf + (1 − α)g denotes the act satisfying that
(αf + (1 − α)g)(s) = αf(s) + (1 − α)g(s) for all s ∈ S. Throughout the paper, we
write s for {s} whenever there is no confusion.

2.2 Contraction Rule

We present the contraction rule in this section. Consider some P ∈ P and a
P -non-null event E. The contraction posterior set Qc(P,E) is defined as follows.

Qc(P,E) =


{µP |E}, if µP (E) ≤ 1,

{Φ(p|E, µP |E) : p ∈ P}, if µP (E) > 1.
(1)

µP |E is called the contraction measure. For each s ∈ E, we have µP |E(s) =
maxp∈P p(s), i.e., the contraction measure consists of the maximal likelihood of
each state in E. We interpret the contraction rule as that the DM updates each
one of her priors towards the contraction measure: when µP (E) > 1, Φ(p|E, µP |E)
is the unique probability measure between p|E and µP |E, and the posterior set is
formed by projecting P |E onto the set of probability measures over E along the
direction towards µP |E; when µP (E) ≤ 1, each measure p|E is first updated to
the contraction measure, and the posterior is given by the normalization of the
contraction measure. In Figure 1, we depict the two cases.

We interpret the value of µP (E) as an indicator of the degree of ambiguity on
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µP |E

(a) µP (E) > 1
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1

1

p̂1

p̂2

0

µP̂ |E

µP̂ |E

(b) µP̂ (E) ≤ 1

Figure 1: For both (a) and (b), all priors are supported in {s1, s2, s3} ⊆ S. Thus each prior
can be depicted in the two-dimensional space, where the horizontal axis denotes the probability
of s1 and the vertical axis denotes the probability of s2. The realized event E is {s1, s2} for both
(a) and (b). In (a), the prior set P is the line segment between p1 and p2, and the contraction
posterior set is the line segment between q1 = Φ(p1|E,µP |E) and q2 = Φ(p2|E,µP |E); In (b), the
prior set P̂ is the line segment between p̂1 and p̂2, and the contraction posterior set is {µP̂ |E}.

E.6 When µP (E) ≤ 1, E has small or no ambiguity. The realization of E renders
the DM’s belief unambiguous. When µP (E) > 1, E has large ambiguity, and thus
its realization does not resolve the DM’s ambiguity. As shown by the following
proposition, when the ambiguity is not resolved, the contraction rule preserves the
contraction measure.

Proposition 1. For any P ∈ P and any P -non-null event E, |Qc(P,E)| = 1 if
and only if µP (E) ≤ 1; in the case where µP (E) > 1, µP |E = µQc(P,E).

We note that requiring the ambiguity to be resolved when µP (E) ≤ 1 is not
ad hoc. In fact, it is implied by two fundamental postulates of belief updating:
(1) the DM’s posterior set is function of P |E; (2) if the DM has an unambiguous
belief over payoff-relevant states, then new information does not render her belief
ambiguous.

Specifically, postulate (1) says that the DM only relies on prior distributions
over states within the realized event E to update her beliefs. The prior distributions
of states in S\E are irrelevant.7

6For the measurement of ambiguity of alternatives, see, for instance, Izhakian (2020).
7One can easily check the both FB and ML satisfy this postulate. Formal definitions of FB

and ML can be found in Section 2.3.
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To state the second postulate, assume that the state space takes the product
structure S = D × Θ, where D contains all payoff-relevant states and Θ contains
all signals. Postulate (2) then says that if the DM’s prior set P induces a unique
marginal distribution on D, then the DM’s ex post belief over D should also
be unambiguous no matter what signal is observed. The following example
demonstrates why the two postulates imply that µP (E) = 1 should be the cutoff
for ambiguity resolving.

Example 1. Consider two prior sets P1 = co({p1, p̂1}) and P2 = co({p2, p̂2}),
where all priors in the two prior sets are supported in Ŝ = {d1, d2} × {θ1, θ2} ⊆ S.
The distributions of p1, p̂1, p2, and p̂2 are presented in Table 1. The realized event
is E = {(d1, θ1), (d2, θ1)}, i.e., signal θ1.

(d1, θ1) (d1, θ2) (d2, θ1) (d2, θ2)
p1 0.1 0.2 0.6 0.1
p̂1 0.4 0.1 0.3 0.2
p2 0.1 0.3 0.6 0
p̂2 0.4 0 0.3 0.3

Table 1: Distributions of p1, p̂1, p2, and p̂2 in Example 1

Note that in Example 1, P1|E = P2|E (since p1|E = p2|E and p̂1|E = p̂2|E).
By postulate (1), P1 and P2 should be updated to the same posterior set when E

is realized. Also note that for P2, both p2 and p̂2 assign probability 0.4 to {d1} × Θ
and probability 0.6 to {d2} × Θ. Thus, P2 is unambiguous on D. By postulate (2),
the realization of signal θ1 does not render the posterior of P2 over D ambiguous.
Hence, both P1 and P2 are updated to some singleton posterior set over E. Here,
the condition µP1(E) ≤ 1 is necessary for the existence of such P2, since otherwise
µP2(E) = µP1(E) > 1 implies that P2 cannot be unambiguous on D. It is also
easy to see that µP1(E) ≤ 1 is sufficient for us to construct such P2.8 Therefore,
postulates (1) and (2) justify the ambiguity resolving part of the contraction rule.

Next, we discuss the case where the information does not resolve the ambiguity.
In this case, the posterior set is Qc(P,E) = {Φ(p|E, µP |E) : p ∈ P}, where

Φ(p|E, µP |E) = µP (E) − 1
µP (E) − p(E)p|E + 1 − p(E)

µP (E) − p(E)µP |E. (2)

8We can always shift probabilities outside of the realized signal to ensure that each payoff-
relevant state has a constant ex ante probability. For instance, in Example 1, we can move p1’s
probability on (d2, θ2) to (d1, θ2) to obtain p2 and p̂1’s probability on (d1, θ2) to (d2, θ2) to obtain
p̂2. By this, we construct P2 based on P1.
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Two observations based on formula (2) should be noted. First, the mixture
weight µP (E)−1

µP (E)−p(E) of p|E is an increasing function of p(E). This sharply captures
how the DM evaluates the likelihoods of the priors: if a prior assigns a higher
probability to E, then it is considered to be more likely given the information E

and is thus weighed more during the updating process. In particular, if p(E) = 1,
then Φ(p|E, µP |E) = p|E. Hence, a prior is completely preserved when it is fully
consistent with the information. Second, the mixture weight of p|E is an increasing
function of µP (E). As µP (E) increases, the information becomes less informative
and thus the DM relies more on her priors.

Finally, we note that the contraction posterior set is well-behaved: (1) the
posterior set Qc(P,E) is always non-empty, convex, and closed; (2) if the new
information is uninformative, then the posterior set equals the prior set.

Proposition 2. For any P ∈ P and any P -non-null event E, Qc(P,E) ∈ P; if
in addition p(E) = 1 for all p ∈ P , then Qc(P,E) = P .

2.3 Comparison with FB and ML

In this section, we compare the contraction rule with FB and ML using one stylized
example. To start with, we formally introduce FB and ML.

For any P ∈ P and P -non-null event E, the FB posterior set is defined as

Qfb(P,E) = cl
(
{p|E : p ∈ P, p(E) > 0}

)
,

where cl(·) denotes the closure of what is inside of the bracket.9 With FB, the DM
updates each prior to its posterior following the Bayes’ rule.

For any P ∈ P and P -non-null event E, the ML posterior set is defined as

Qml(P,E) = {p|E : p ∈ P such that p(E) ≥ p̂(E),∀p̂ ∈ P}.

With ML, the DM only updates the priors that maximize the probability of E
following the Bayes’ rule. Our next example illustrates the differences among FB,
ML, and the contraction rule.

9The set {p|E : p ∈ P, p(E) > 0} might not be closed. For instance, consider P = {p ∈ ∆(S) :
p({s1, s2, s3}) = 1, p2(s1) + (1 − p(s2))2 ≤ 1}. One can verify that P ∈ P and if E = {s1, s2},
then {p|E : p ∈ P, p(E) > 0} = {q ∈ ∆(S) : q({s1, s2}) = 1, q(s2) > 0}, which is not closed.
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Example 2. Let P = co({p1, p2, p3}) with support {s1, s2, s3} ⊆ S. Distributions
of p1, p2, and p3 are given by

p1(s1) = 6/25, p1(s2) = 14/25, p1(s3) = 1/5,
p2(s1) = 2/3, p2(s2) = 1/6, p2(s3) = 1/6,
p3(s1) = 1/20, p3(s2) = 1/5, p3(s3) = 3/4.

Assume that the realized event is E = {s1, s2}. The contraction posterior set, the
FB posterior set, and the ML posterior set, as depicted in Figure 2, are Qc(P,E) =
co({q1, q2}), Qfb(P,E) = co({q̂1, q̂2}), and Qml(P,E) = {q̂2} respectively, where
q1(s1) = 1 − q1(s2) = 11/25, q2(s1) = 1 − q2(s2) = 2/3, q̂1(s1) = 1 − q̂1(s2) =
1/5, q̂2(s1) = 1 − q̂2(s2) = 4/5.

s1

s2

1

1

p1

p2

0

q1

q2

p3

p∗

µP |E

(a) contraction posterior

s1

s2

1

1

p1

p2

0

q̂1

p3
q̂2

p∗

q̂∗

(b) FB posterior

s1

s2

p3

1

1

p1

p2

0

q̂2

(c) ML posterior

Figure 2: (a) The triangle p1p2p3 constitutes the prior set P and the line segment between q1
and q2 is the contraction posterior set; (b) The triangle p1p2p3 constitutes the prior set P and
the line segment between q̂1 and q̂2 is the FB posterior set; (c) The triangle p1p2p3 constitutes
the prior set P and {q̂2} is the ML posterior set.

First note that with FB, any prior, regardless of the probability it assigns to
the realized event, is updated with the Bayes’ rule. Hence, the FB posterior set can
be very sensitive to priors that are less likely. To see this, note that in Figure 2 (b),
if p3 shifts to p∗, i.e., the prior set changes from co({p1, p2, p3}) to co({p1, p2, p

∗}),
then the FB posterior set is enlarged to co({q̂∗, q̂2}). Since priors that assign less
probabilities to the realized event are amplified more by the Bayes’ rule, changes
among those priors can result in significant changes of the FB posterior set.

By contrast, the ML posterior set is a singleton as shown in Figure 2 (c).
Different from FB, ML only updates priors that maximize the probability of the
realized event, i.e., the priors that are most consistent with the information. As a
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consequence, ML might rule out many reasonable priors. For instance, in Example
2, prior p1 only assigns slightly less probability to E than p2 does. However, it is
disregarded by ML all of a sudden when E is realized.

The contraction rule moderates FB and ML in the sense that it updates all
priors (when the realized event has large ambiguity) but puts less weights to those
that are less consistent with the information. As shown in Figure 2 (a), the shift
of p3 to p∗ does not affect the contraction posterior set. Since p∗ assigns a small
probability to E, formula (2) implies that only a small weight is put on p∗|E when
it is updated to its posterior. Thus the contraction rule is not sensitive to less
likely priors.

One observation from the above comparison is that neither FB nor ML is
continuous: the FB posterior set is very sensitive to priors that assign small
probabilities to the realized event; the ML posterior set is unstable when there are
multiple priors simultaneously maximizing the probability of the realized event.
We show in Appendix A (Examples 5 and 6) that FB is not upper hemicontinuous
and ML is not lower hemicontinuous. In contrast, the following proposition states
that the contraction rule is continuous.

Proposition 3. For any sequence of prior sets {Pn}+∞
n=1 ⊆ P that have the same

finite support Ŝ ⊆ S, if {Pn}+∞
n=1 converges to P ∈ P in Hausdorff metric,10 then

for any P -non-null event E, there exists m such that E is Pn-non-null for all
n ≥ m, and {Qc(Pn, E)}+∞

n=m converges to Qc(P,E) in Hausdorff metric.

2.4 Divisibility

When a DM has multiple pieces of information, the order in which information
arrives may affect the DM’s final beliefs. To see this, consider a DM who receives
two pieces of information: E and F . If the DM observes E at the first stage and
F at the second stage, she might update her beliefs first to some posteriors on E

then to some posteriors on E ∩ F . If the DM observes F at the first stage and
E at the second stage, then she might have a different updating path. There is
no guarantee that the DM’s posterior sets over E ∩ F are the same in the two
cases. An updating rule is divisible, or path-independent, if the posterior set of

10Since {Pn}+∞
n=1 and P have finite support Ŝ, we view them as subsets of RŜ . Let d be the

Euclidean metric in RŜ . The Hausdorff metric dh for any two compact sets A and B is given by
dh(A,B) = max{maxx∈A(miny∈B d(x, y)),maxz∈B(minw∈A d(z, w))}.
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the DM is unaffected by the order in which several pieces of information arrive. A
divisible rule delivers unique predictions on the DM’s final beliefs regardless of her
information acquisition order. Divisible rules are characterized by Cripps (2019)
when there is no ambiguity. In the remaining part of this section, we show that
the contraction rule is divisible.

Example 3. Let P = co({p, p̂}) with support {s1, s2, s3, s4} ⊆ S. The distributions
of p and p̂ are given by p(s1) = 1/3, p(s2) = 1/3, p(s3) = 1/6, p(s4) = 1/6;
p̂(s1) = 2/3, p̂(s2) = 0, p̂(s3) = 1/3, and p̂(s4) = 0. Suppose that the DM is
first informed of event E = {s1, s2, s3}. Since µP (E) = 2/3 + 1/3 + 1/3 =
4/3 > 1, we have Qc(P,E) = co({q, p̂}), where q(s1) = 4/9, q(s2) = 1/3, and
q(s3) = 2/9. Suppose that the DM is then informed of event F = {s1, s2}.
Since µQc(P,E)(F ) = 2/3 + 1/3 = 1, the contraction posterior set is given by
Qc(Qc(P,E), F ) = {µQc(P,E)|F} = {q∗}, where q∗(s1) = 2/3 and q∗(s2) = 1/3.

By contrast, suppose that the DM is directly informed of F at the beginning.
Since µP (F ) = 2/3 + 1/3 = 1, her contraction posterior set is given by Qc(P, F ) =
{µP |F} = {q∗}. It follows that Qc(Qc(P,E), F ) = Qc(P, F ).

In Example 3, either the DM is first informed of event E or directly informed of
F does not affect her final belief set. The key observation from this example is that
µQc(P,E)|F = µP |F (which is implied by Proposition 1). Since the DM updates
her priors towards the contraction measure, the DM’s posterior set on F does not
change as long as the contraction measure on F remains unchanged. The next
proposition states a more general result: if we know that the DM observes two
(or multiple) events, then we can assume without loss of generality that the DM
observes the two (or multiple) events simultaneously and only updates her beliefs
once. Thus the contraction rule is divisible.

Proposition 4. For any P ∈ P and P -non-null events E and F with F ⊆ E,
Qc(Qc(P,E), F ) = Qc(P, F ).

Note that FB is also a divisible rule since it updates each prior with the
Bayes’ rule. The divisibility of FB is driven by the same geometric feature as
the contraction rule: the origin—the measure that assigns each state a measure
of zero—serves as a contraction point, and each prior is updated away from the
contraction point. Clearly, the contraction point of FB remains unchanged after
updating.
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3 Axiomatic Foundation

In this section, we first introduce evaluation functions. The DM’s beliefs can be
uniquely identified by her evaluation function. We then provide an axiomatic
foundation for the contraction rule based on DMs’ evaluation functions.

3.1 Evaluation Function

The DM’s set of beliefs over S can be identified through her choices over acts. We
characterize her choices through an evaluation function, which is a map V : F → K
such that for any x ∈ K, any f, g, h, l ∈ F and any α ∈ (0, 1):

(1) (Identity): V (x) = x.

(2) (Continuity): {t ∈ [0, 1] : V (tf + (1 − t)g) ≥ V (th+ (1 − t)l)} is closed.

(3) (Certainty Independence): V (f) > V (g) if and only if V (αf + (1 − α)x) >
V (αg + (1 − α)x).

(4) (Monotonicity): f ≥ g implies V (f) ≥ V (g).

(5) (Uncertainty Aversion): V (f) = V (g) implies V (1
2f + 1

2g) ≥ V (f).

(6) (Finite Support): There exists a non-empty and finite subset Ŝ ⊆ S such
that V (f) = V (g) for all f and g with f =Ŝ g.

Conditions (1)-(5) are slightly modified from the axioms by Gilboa and
Schmeidler (1989). Together with condition (6), the conditions are sufficient
and necessary for V to have a max-min representation with finite support. That is,
there exists P ∈ P such that V (f) = EP (f) for each act f . Such a set of priors P
is said to represent V . Let V be the set of all evaluation functions. Each element
of V uniquely corresponds to an element in P, and vice versa. Thus the set of
evaluation functions characterizes all possible belief sets of the DM.

When some event E is realized, the DM revises her beliefs. She updates her
set of priors to a set of posteriors. Her set of posteriors can be identified through
her ex post evaluation function.

Now, we are ready to define updating rules over evaluation functions. We only
consider events that happen with non-zero probabilities.11 For this purpose, we
define non-null events for a given evaluation function. A set E ⊆ S is said to be

11We do not model how DMs react to unexpected information in this paper. For theories of
updating events with zero probability, see, for example, Ortoleva (2012).
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V -null if V (f) = V (g) for all f, g ∈ F satisfying f =S\E g. E is V -non-null if it
is not V -null. It is easy to see that if an evaluation function V is represented by
P , then E is V -null if and only if E is P -null. Let SV be the set of all V -non-null
events.

Define G ⊆ V ×S such that (V,E) ∈ G if and only if E ∈ SV . By this definition,
a tuple (V,E) is contained in G if and only if E is V -non-null.

Definition 1. An updating rule over evaluation functions is a function Γ : G → V
such that (i) S\E is Γ(V,E)-null, and (ii) if S\E is V -null, then Γ(V,E) = V .

By Definition 1, an updating rule maps each evaluation function V and one of
its non-null events E to a new evaluation function Γ(V,E), where V characterizes
the DM’s ex ante beliefs and Γ(V,E) captures the DM’s ex post beliefs after E
is realized. Condition (i) requires that states outside of the realized event should
not affect the DM’s ex post evaluation. Condition (ii) says that when there is
essentially no new information, the DM does not revise her beliefs.

Definition 2. An updating rule Γ over evaluation functions is the contraction rule
(respectively FB and ML) if for any (V,E) ∈ G with V being represented by P ,
Γ(V,E) is represented by Qc(P,E) (respectively Qfb(P,E) and Qml(P,E)).

Discussion of the updating framework. First, we restrict our attention to max-
min DMs. This is aligned with the main objective of this paper, i.e., investigating
how new information shapes DMs’ multiple beliefs. As will be clear later, the
axioms that we use to characterize our updating rule do not necessarily require
the DM’s preference to admit a max-min representation. We leave the study of
our axioms in other models of ambiguity for future work.

Second, updating rules are defined over the set of all possible evaluation
functions. We provide two interpretations for the rich choice domain we adopt.
The first interpretation is that we can observe choices made by the DM in various
choice scenarios and aggregate those choices to the universal state space S. For
instance, suppose that we observe the DM’s choices as well as how she reacts
to new information in a specific choice scenario with a finite state space Ŝ. We
can then define an arbitrary injection ϕ : Ŝ → S to map the DM’s preferences
over acts on Ŝ (before and after information) to her preferences over acts on S

with support ϕ(Ŝ). An implicit assumption under this interpretation is that for
any two choice scenarios with state space S1 and S2 respectively, if there is an
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isomorphism ψ : S2 → S1 such that the DM’s evaluation functions V1 and V2 under
the two scenarios are equivalent in the sense that V1(f) = V2(ψ(f)) for all acts
f : S1 → K12, then how she reacts to information should be identical in the two
scenarios, i.e., the ex post evaluation function given event E ⊆ S1 in the first
scenario and that given event ψ−1(E) ⊆ S2 in the second scenario are equivalent in
the same sense. Following this interpretation, the axioms in the next section can be
viewed as consistency conditions obeyed by the DM when processing information
in different choice scenarios.

Another interpretation is that we observe the choice behavior of the whole pop-
ulation. In this regard, our axioms can be viewed as consistent conditions imposed
on the whole population whose preferences allow for max-min representations.
When illustrating the axioms in the next section, we adopt the first interpretation.

3.2 Characterization

We provide an axiomatic foundation for the contraction rule in this section.
Whenever Γ is clear, we write VE for Γ(V,E).

Increased Sensitivity after Updating (ISU). For any (V,E) ∈ G and
f, g ∈ F with g ▷s f for some s ∈ E, V (f) = VE(f) implies V (g) ≤ VE(g).

Axiom ISU says that the DM becomes more sensitive to payoff differences on
state s if the new information (E) does not rule out s. Since V (f) = VE(f), the
condition V (g) ≤ VE(g) implies that V (g) − V (f) ≤ VE(g) − VE(f), which means
that the DM reacts more to the payoff-increase on s after the information.

Axiom ISU is closely related to dynamic consistency. To see this, note that
axiom ISU can be restated as: for any (V,E) ∈ G and f, g ∈ F with g▷s f for some
s ∈ E and V (f) = VE(f), if V (1

2f + 1
2x) = V (1

2g + 1
2y) for some x, y ∈ K, then

VE(1
2f + 1

2x) ≤ VE(1
2g + 1

2y).13 The new condition can be interpreted as a version
of dynamic consistency with monotonicity. Since V (f) ≤ V (g), we know x ≥ y,
and thus for each ŝ ∈ S\E, 1/2f(ŝ) + 1/2x ≥ 1/2g(ŝ) + 1/2y. Since 1/2f + 1/2x

12ψ(f) is an act over S2 such that ψ(f)(s2) = f(ψ(s2)) for all s2 ∈ S2
13To see why the statement is equivalent to axiom ISU, assume first that axiom ISU holds.

Since V (f) = VE(f), we have V (g) ≤ VE(g) and thus V (g) − V (f) ≤ VE(g) − VE(f). If
V ( 1

2f + 1
2x) = V ( 1

2g + 1
2y) for some x, y ∈ K, we have V (g) − V (f) = x − y. It follows that

x− y ≤ VE(g) − VE(f). Then we have VE( 1
2f + 1

2x) ≤ VE( 1
2g + 1

2y). The inverse direction can
be shown similarly.
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s1 s2 s3 s4
p 0.1 0.6 0.2 0.1
p̂ 0.7 0.1 0.1 0.1
f 1 0 10000 x

f̂ 2 0 10000 x
g 0 1 −10000 y
ĝ 0 2 −10000 y

Table 2: Distributions of the priors and payoffs of the acts in Example 4

is as good as 1/2g + 1/2y at the ex ante stage and the realization of E rules out
the states on which 1/2f + 1/2x is better than 1/2g + 1/2y, 1/2f + 1/2x becomes
weakly worse than 1/2g + 1/2y after the realization of E. Nevertheless, as shown
by Hanany and Klibanoff (2007), it is impossible to maintain dynamic consistency
in a general belief updating framework under ambiguity. The following example
shows that axiom ISU also fails when the ambiguity on the realized event is large.

Example 4. Let V be an evaluation function represented by P = co({p, p̂}) with
support {s1, s2, s3, s4} ⊆ S. The distributions of p and p̂ are presented in Table 2.
Consider four acts f , f̂ , g, and ĝ. The payoffs of the acts on Ŝ are also presented
in Table 2. The realized event is E = {s1, s2}.

We argue that in Example 4, axiom ISU is violated for any updating rule. First,
note that for both f and f̂ , the prior in P that minimizes their expected payoffs is
p̂, since p̂ assigns a smaller probability to state s3 than p does. f̂ differs from f on
state s1 where f̂ yields a higher payoff. Thus V (f̂) − V (f) = p̂(s1) = 0.7.

Next, for g and ĝ, by a similar observation, the prior in P that minimizes their
expected payoffs is p. g and ĝ differ on state s2 with ĝ yielding a higher payoff.
Thus we have V (ĝ) − V (g) = p(s2) = 0.6.

Now, consider an arbitrary updating rule and assume that V is updated to VE

when E is realized. We argue that axiom ISU cannot hold. Since {s4} is VE-null,
there exist x and y such that V (f) = VE(f) and V (g) = VE(g). Since f̂ ▷s1 f and
ĝ ▷s2 g, axiom ISU requires that VE(f̂) − VE(f) ≥ 0.7 and VE(ĝ) − VE(g) ≥ 0.6.
If VE is represented by some Q ∈ P, then the above two inequalities imply that
minq∈Q q(s1) ≥ 0.7 and minq∈Q q(s2) ≥ 0.6, which are impossible. Hence, axiom
ISU is violated by any updating rule.

By Example 4, if the ambiguity of the realized event E is too large, then axiom
ISU may not hold. Indeed, when E has large ambiguity, the DM is likely to exhibit
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excessive sensitivity to each state in E. It then becomes harder for the DM to
increase her sensitivity to each state in E simultaneously after the realization of
E. In what follows, we introduce a weakening version of axiom ISU. Prior to
presenting the new axiom, we need the following definition.

Definition 3. For any partition Π = {Si}n
i=1 of S, an evaluation function V is

unambiguous with respect to Π if V (1
2f + 1

2g) = V (f) for any two acts f and g

that are measurable with respect to Π and satisfy V (f) = V (g); otherwise, V is
ambiguous with respect to Π. V is unambiguous if V (1

2f + 1
2g) = V (f) for any two

acts f and g that satisfy V (f) = V (g); otherwise, V is ambiguous.

By the definition, an evaluation function is unambiguous if and only if the DM
does not benefit from hedging.

Ambiguity-driven Decreased Sensitivity after Updating (ADSU). For
any (V,E) ∈ G and f, g ∈ F with g ▷s f for some s ∈ E, if V (f) = VE(f) and
V (g) > VE(g), then VE is ambiguous.

As we have argued, the violation of axiom ISU is due to the large ambiguity
of the realized event. By axiom ADSU, such ambiguity cannot be resolved after
updating, and thus the ex post evaluation function VE is ambiguous.

To proceed, we define mixture over evaluation functions. For any V, V̂ ∈ V and
α ∈ [0, 1], define αV +(1−α)V̂ such that (αV +(1−α)V̂ )(f) = αV (f)+(1−α)V̂ (f)
for all f ∈ F .14

Mixture Independence (MI). For any V, V̂ ∈ V , E ∈ SV \SV̂ , and α ∈ (0, 1),
VE = (αV + (1 − α)V̂ )E.

Since E is V̂ -null, V and αV + (1 − α)V̂ share the same structure of ambiguity
on E. Axiom MI says that the DM’s ex post choice behavior is determined by the
ambiguity structure on the realized event. However, since V and αV + (1 − α)V̂
might have different degrees of ambiguity on E, axiom MI cannot accommodate the
situation in which the DM’s ex post choices are affected by the degree of ambiguity
on the realized event. Thus we consider the following weaker version of axiom MI.

Mixture Independence without Ambiguity (MIA). For any V, V̂ ∈ V,
E ∈ SV \SV̂ , and α ∈ (0, 1), if VE is unambiguous, then VE = (αV + (1 − α)V̂ )E.

14Lemma 5 shows that the mixture of two evaluation functions is indeed an evaluation function.
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By axiom MIA, the degree of ambiguity on the realized event does not affect
the DM’s ex post choices if its realization already resolves the DM’s ambiguity.

Betweenness (B). For any V, V̂ ∈ V and E ∈ SV ∩SV̂ , if max {V (fEx), VE(f)} ≥
V̂ (fEx) ≥ min {V (fEx), VE(f)} for all f ∈ F and x ∈ K, then VE = V̂E.

To understand axiom B, consider three choice scenarios. The DM’s ex ante
evaluation function is V , V̂ , and VE in scenario 1,2, and 3 respectively. The
primitive conditions of axiom B indicate that the DM’s ex ante choices on E in
scenario 3 are more similar to those in scenario 2 than to those in scenario 1. It
follows that when event E is realized, the DM’s ex post choices in scenario 3 are
more similar to those in scenario 2 than to those in scenario 1. Since the DM’s
ex post choices in scenarios 1 and 3 are identical (both evaluation functions are
updated to VE), her ex post choices in scenario 2 must also be the same as those
in scenario 3. That is, she revises V̂ to VE when E is realized.

By axiom B, the similarity between the DM’s ex ante choices in different choice
scenarios is preserved after information. However, this axiom can be violated if
the DM’s belief is rendered unambiguous when an event with small ambiguity is
realized. In such case, the DM must ignore some part of the information contained
in the realized event, say E, as she disregards the ex ante ambiguity on E. As a
result, even if the DM makes similar ex ante choices on E in two different choice
scenarios, her ex post choices in the two scenarios might become dissimilar when E
is realized, since she might ignore different parts of the information contained on
E in the two scenarios. Hence, axiom B can be violated in such case. To exclude
situations like this, we modify axiom B to the next axiom .

Before stating the axiom, we need some definitions. For a given updating rule
Γ, we say that E does not resolve ambiguity of V if VE is ambiguous, and that
E does not strongly resolve ambiguity of V if there exists an evaluation function
V̂ such that (αV + (1 − α)V̂ )E is ambiguous for all α ∈ (0, 1). We note that if E
does not resolve ambiguity of V , then E does not strongly resolve ambiguity of
V .15 The latter one can be considered as the limiting case of the former one.

Mixture Ambiguity Betweenness (MAB). For any V, V̂ , Ṽ ∈ V , α ∈ (0, 1],
and E ∈ (SV ∩ SV̂ )\SṼ that does not strongly resolve ambiguity of αV + (1 −α)Ṽ ,

15To see this, assume that E does not resolve ambiguity of V . It follows that (αV +(1−α)V )E

is ambiguous for all α ∈ (0, 1). Thus, E does not strongly resolve ambiguity of V .
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let W = αV + (1 − α)Ṽ and Ŵ = αV̂ + (1 − α)Ṽ . If max {W (fEx),WE(f)} ≥
Ŵ (fEx) ≥ min {W (fEx),WE(f)} for all f ∈ F and x ∈ K, then VE = V̂E.

Axiom MAB can be implied by axioms MI and B. We interpret axiom MAB as
follows. The requirement that the ambiguity of W on E is not resolved indicates
that the DM processes all information contained in E when doing the update.
Thus, following the interpretation of axiom B, the condition imposed on W and
Ŵ indicates that the DM updates them to the same ex post evaluation function.
Since E is Ṽ -null, V (V̂ ) and W (Ŵ ) share the same ambiguity structure on E.
The only difference between V (V̂ ) and W (Ŵ ) is that V (V̂ ) has 1/α times larger
degree of ambiguity on E than W (Ŵ ) does. Since the ambiguity on E is enlarged
to the same extent for both cases, the DM updates V and V̂ to the same ex post
evaluation function when E is realized.

Independence of Irrelevant States (IIS). For any V, V̂ ∈ V and E ∈
SV ∩ SV̂ , if V (fEx) = V̂ (fEx) for all f ∈ F and x ∈ K, then VE = V̂E.

Clearly, axiom B implies axiom IIS. The primitive conditions of axiom IIS
ensure that V and V̂ completely agree on E. The axiom then says that unrealized
states do not affect the DM’s belief updating.

In Appendix B, we show that FB satisfies axioms ADSU, MI, and B (and thus
FB satisfies all the axioms introduced so far except for axiom ISU) and can be
characterized by the latter two axioms. The next axiom is the only one that is
satisfied by the contraction rule but not by FB.

Nonincreasing Ambiguity by Information (NAI). For any V ∈ V that
is unambiguous with respect to the partition {Si}n

i=1 of S, and any E ∈ SV , if
|E ∩ Si| ≤ 1 for each i, then VE is unambiguous.

To interpret axiom NAI, assume that each block Si is a payoff-relevant state.
Then the realized event E can be viewed as a signal. By axiom NAI, if the DM is
unambiguous with respect to the payoff-relevant states at the ex ante stage, then
new information does not render her evaluation function ambiguous.

Theorem 1. An updating rule over evaluation functions is the contraction rule if
and only if it satisfies axioms ADSU, MIA, IIS, MAB, and NAI.

Discussion of the axioms. The key motivation of our axiomatic exercise is that
the ambiguity on the realized event can be resolved when the its degree is small.
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Axioms ADSU, MIA, and MAB are all related to this motivation. Axiom IIS can
be considered as a probabilistic version of consequentialism and is satisfied by
the contraction rule as well as the two benchmark rules FB and ML. Axiom NAI
is motivated by recent experimental evidence that information does not increase
ambiguity. It distinguishes our model from the two benchmark ones.

An important question is whether the axioms provided in this section can be
tested in the lab. Clearly, axioms ADSU and NAI can be directly tested through
the DM’s choices in a single choice scenario. Axioms MIA, IIS, and NAI are
also testable. For instance, consider the testing of axiom IIS. Assume that there
are two independent choice scenarios. In scenario 1, there is an urn (urn 1) that
contains 100 balls, of which 50 are green and 50 are either red or blue with unknown
composition. In scenario 2, there is an urn (urn 2) that contains 100 balls, of
which 50 are either green or yellow and 50 are either blue or red with unknown
composition. From each urn, a ball is drawn. Consider an act f (f̂) in scenario 1
(2) such that f (f̂) yields payoff x when the ball drawn from urn 1 (2) is red, payoff
y when the drawn ball is blue, and z otherwise. If the DM always has the same
evaluation over f and f̂ in the two choice scenarios, then the primitive condition of
axiom IIS is satisfied, i.e., the two evaluation functions in the two choice scenarios
agree on the “event” that the ball drawn from the urn is either red or blue. We
can then inform the DM in the two scenarios that the drawn ball is either red or
blue and collect the DM’s ex post evaluations over acts. By comparing the DM’s
ex post evaluations towards the “same” act in the two scenarios, we are able to
falsify whether the DM’s choice behavior satisfies axiom IIS or not.

4 Application

Throughout this section, we assume that each prior of the DM assigns probability
one to a subset Ŝ ⊆ S where Ŝ = D × Θ. D is a finite payoff-relevant state space
and Θ is a finite signal space. A piece of information takes the form of some signal
θ ∈ Θ, i.e., event D× {θ}. We fix Π̂ to be the partition {{d} × Θ : d ∈ D} of Ŝ.16

We consider three applications of the contraction rule. First, we connect the
contraction rule with the experimental findings by SO21 and show that the rule
does not create belief dilation under mild conditions. Second, we study how DMs

16We ignore all states outside of Ŝ since they play no role in the analysis.
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update their beliefs with information of unknown accuracy by associating the
contraction rule with the findings by L21. Finally, we investigate whether the DM
learns with a sequence of independent and ambiguous signals. We find that the
contraction rule leads to learning of the true state.

4.1 Dilation

SO21 study how ambiguous information shapes the DM’s beliefs over payoff-
relevant states. Through lab experiments, they empirically test the hypothesis
that ambiguous information increases payoff-relevant ambiguity and reject it. In
what follows, we show that the contraction rule provides consistent predictions
with their findings.

Consider a DM with prior set P over D × Θ. A signal θ ∈ Θ dilates the
DM’s payoff-relevant belief set under updating rule Q if PΠ̂ ⊊

(
Q(P,D × {θ})

)
Π̂

,
i.e., after observing signal θ, the DM’s posterior set over D strictly contains her
prior one.17 The following proposition establishes a non-dilation result for the
contraction rule when D contains only two states.

Proposition 5. If |D| = 2, then for any signal θ such that D× {θ} is P -non-null,
θ does not dilate the DM’s payoff-relevant belief set under the contraction rule.

We discuss the special case of Proposition 5 where there are two symmetric
signals. This is exactly the case studied by SO21. Let D = {d1, d2} and Θ =
{θ1, θ2}. Assume that p ∈ P if and only if p(d1, θ1) = αβ, p(d1, θ2) = α(1 − β),
p(d2, θ1) = (1 − α)(1 − β), and p(d2, θ2) = (1 − α)β for some α ∈ [1/2 − a, 1/2 + a]
and β = [1/2 − b, 1/2 + b], where a ∈ [0, 1/2] and b ∈ (0, 1/2] are constants. That
is, the DM believes the probability of d1 to be at least 1/2 − a and at most 1/2 + a

and the conditional probability of θ1 (respectively θ2) on d1 (respectively d2) to be
at least 1/2 − b and at most 1/2 + b.

When a = 0, there is no ex ante payoff-relevant ambiguity: the DM assigns
probability half to both d1 and d2. As shown by SO21, the realization of any signal
dilates the DM’s belief set over D if she follows FB or ML. By contrast, if the DM
updates with the contraction rule, her ex post belief over D would be the same
as her ex ante one. Thus, for a given prospect (call it prospect K) that yields a

17Our definition of belief dilation is a weak version. Wasserman and Kadane (1990) define
dilation as the case in which each signal enlarges the payoff-relevant set of priors.
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high payoff on d1 and a low payoff on d2, only the contraction rule predicts that
information does not change the DM’s evaluation over prospect K. This prediction
is tested to be true for a large proportion of ambiguity averse subjects by SO21.

When a > 0, there is ex ante payoff-relevant ambiguity: the DM believes
that the probability of d1 is at least 1/2 − a and at most 1/2 + a. For any
given signal, there are two cases to be considered for the contraction rule. If
(1/2+a)(1/2+b) ≤ 1/2, then the signal resolves the DM’s payoff-relevant ambiguity.
In this case, the DM believes d1 and d2 to be equally likely after observing the
signal. If (1/2 + a)(1/2 + b) > 1/2, then the DM’s beliefs are revised to that the
probability of d1 ranges from 1 − (1/2 + a)(1/2 + b) to (1/2 + a)(1/2 + b). In both
cases, the information decreases payoff-relevant ambiguity. Thus, an ambiguity
averse DM increases her evaluation over prospect K after the information. This
is indeed the case for a non-negligible proportion of ambiguity averse subjects in
SO21’s experiments.

Our next proposition provides generic conditions under which belief dilation
does not occur with the contraction rule: when there is no ex ante payoff-relevant
ambiguity or when the prior set is contained in the interior of ∆(D × Θ).

Proposition 6. If either PΠ̂ is a singleton or p(d, θ) > 0 for all p ∈ P , d ∈ D,
and θ ∈ Θ, then no signal dilates the DM’s belief set over D under the contraction
rule.

4.2 Information with Ambiguous Accuracy

In this section, we study how DMs react to information with unknown accuracy
following the framework of L21. Let D = {d1, d2} and Θ = {d̂1, d̂2}. The DM’s
priors over D are characterized by an interval [r, r] ⊆ (0, 1), i.e., she believes that
the probability of d1 ranges from r to r. Following L21, we consider two scenarios.

In scenario 1, the DM can seek information from an expert with unknown
accuracy. The expert informs the DM of her prediction of the true state by sending
either signal d̂1 or d̂2: d̂1 (respectively d̂2) refers to prediction d1 (respectively
d2). The DM believes that there are two possible accuracy levels of the expert’s
predictions: H and L. That is, the DM considers two conditional probabilities
of the signals: cH(d̂1|d1) = cH(d̂2|d2) = H and cL(d̂1|d1) = cL(d̂2|d2) = L. We
require that 1 > H > L > 0 and H + L > 1.18 We allow L to be smaller than

18If H + L < 1, we can exchange the labels of the two signals.
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1/2 in order to accommodate the possibility that the expert intentionally lies to
the DM. We assume that the accuracy of the expert’s predictions is independent
of the DM’s priors over D. Thus, the DM’s prior set P over D × Θ is given by
co({pr,L, pr,H , pr,L, pr,H}), where for each r ∈ {r, r} and J ∈ {L,H}, we have

pr,J(d1, d̂1) = rJ, pr,J(d1, d̂2) = r(1 − J),

pr,J(d2, d̂1) = (1 − r)(1 − J), pr,J(d2, d̂2) = (1 − r)J.

In scenario 2, there is an expert with accuracy H+L
2 . Now, conditional on the

true state being di ∈ D, the probability for the expert predicting correctly is H+L
2 .

The prior set of the DM is thus given by co({pr, pr}) where for each r ∈ {r, r},

pr(d1, d̂1) = r
H + L

2 , pr(d1, d̂2) = r(1 − H + L

2 ),

pr(d2, d̂1) = (1 − r)(1 − H + L

2 ), pr(d2, d̂2) = (1 − r)H + L

2 .

We compare the DM’s ex post evaluations over certain prospects in the two
scenarios. For this purpose, we consider two acts f and g where f(d1, d̂1) =
f(d1, d̂2) = g(d2, d̂1) = g(d2, d̂2) = 1 and f(d2, d̂1) = f(d2, d̂2) = g(d1, d̂1) =
g(d1, d̂2) = 0. Thus f yields payoff 1 on d1 and 0 on d2; g yields 0 on d1 and 1 on
d2. Let va

f (respectively vu
f ) be the DM’s ex post evaluation of f after observing d̂1

in scenario 1 (respectively scenario 2); let va
g (respectively vu

g ) be the DM’s ex post
evaluation of g after observing d̂1 in scenario 1 (respectively scenario 2).

Proposition 7. If the DM updates her beliefs with the contraction rule, then
vu

f > va
f , and the comparison between vu

g and va
g depends on 1−r̄

1−r
:

(1) if 1−r̄
1−r

< 1−r
1−rH

2−H−L
H+L

, then va
g < vu

g ,

(2) if 1−r̄
1−r

= 1−r
1−rH

2−H−L
H+L

, then va
g = vu

g ,

(3) if 1−r
1−rH

2−H−L
H+L

< 1−r̄
1−r

, then vu
g < va

g .

We interpret Proposition 7 as follows. The condition H + L > 1 ensures that
the information is asymmetrically informative in both scenarios. Thus d̂1 is good
news for f and bad news for g. The first inequality vu

f > va
f indicates that with

the contraction rule, the DM under-reacts to good news if it is ambiguous.

However, contraction rule does not always predict under-reaction to ambiguously
bad news. To understand our result, note that bad news not only pushes the DM’s
priors towards the bad state (d1) of g but also partially resolves payoff-relevant

25



ambiguity. Thus a DM who exhibits ambiguity aversion may increase her evaluation
of g even receiving bad news. Note that in the proposition, the term 1−r̄

1−r
captures

the degree of the DM’s ex ante ambiguity on D. A larger value of 1−r̄
1−r

corresponds
to less ex ante ambiguity. When 1−r̄

1−r
is small (case (1)), the DM’s ex ante ambiguity

is large and she benefits more from resolving of the ambiguity. Thus, the DM
benefits more from unambiguous information than the ambiguous one. As the ex
ante ambiguity decreases, the effect of ambiguity resolving is dominated by the
effect of under-reaction to ambiguous information, which leads to vu

g < va
g (case

(3)).

The theoretical predictions by the contraction rule are consistent with the
experimental and empirical evidence provided by L21, who finds that subjects
exhibit under-reaction to ambiguous information and pessimism to ambiguously bad
news through both lab experiments and stock price reactions to analyst earnings
forecasts. However, as shown by Proposition 7, our DM exhibits pessimism for
ambiguously bad news only when the ex ante ambiguity is large while a certain
proportion of subjects in L21’s experiments exhibit pessimism for such news when
there is no ex ante ambiguity. Nevertheless, our results are relevant in the empirical
analysis of the stock price reactions by L21, where the ex ante ambiguity of stock
prices is typically large.

4.3 Learning with Ambiguous Information

In this section, we extend our analysis in Section 4.2 to a Wald-type learning
scenario. Consider a binary payoff-relevant state space D = {d1, d2}, for which
the DM’s prior set is given by [r, r] ⊆ (0, 1). Instead of observing one signal, the
DM observes n independent signals. The signal space is thus given by Θ = Θ̂n,
where Θ̂ = {d̂1, d̂2}. To motivate, one can imagine that there are n independent
experts. Each expert has prediction accuracy H or L, where 1 > H > L > 0 and
H + L > 1.

When a sequence of signals (d̂1, ..., d̂n) ∈ Θ̂n are realized, the DM updates her
prior set over D to some posterior set. We are interested in the DM’s ex post belief
set when n is large. In particular, we investigate whether the DM’s beliefs converge
to the true state of the world if provided with a long sequence of independent and
ambiguous signals. For this purpose, we assume that the true prediction accuracy
of each expert is H+L

2 > 1. Let In
di

⊆ [0, 1] be the set of the DM’s posterior beliefs
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over d1 (which is a random variable) when the true state is di ∈ D and the number
of signals is n. The following proposition asserts that with the contraction rule,
the DM would finally learn the true state when there are enough signals.

Proposition 8. If the DM updates with the contraction rule, then for any ϵ > 0,
the probabilities of minr∈In

d1
≥ 1 − ϵ and maxr∈In

d2
≤ ϵ both converge to one.

We close this section by comparing Proposition 8 with the predictions of FB
and ML on learning. If the DM updates with FB, she cannot learn the true state
if L < 1/2. In this case, any given signal can be interpreted as supporting state
d1 as well as against d1. Consequently, the DM dilates her belief set over D no
matter what signal is observed at each round, and her posterior set converges to
[0, 1]. That is, after many rounds of learning, the DM becomes completely confused
about the true state and believes that the probability of d1 ranges from 0 to 1.

If the DM follows ML, then whether the DM learns the true state depends on
how she processes the information. If the DM updates her beliefs after receiving
all signals, then she can finally learn the true state.19 However, if the DM updates
her prior set over D signal by signal, then she cannot learn the true state with
probability one. To see why, note that ML is not a divisible rule. If the DM
observes a lot of signals d̂1 at the first several rounds, she would update her beliefs
towards state d1. If she assigns a high enough probability to d1, then no matter
what new signal is realized, she will always interpret the new signal as supporting
d1. In this case, whether the DM can learn the true state or not depends on the
initial sequence of signals. By contrast, since the contraction rule is divisible, it
robustly predicts that the DM would learn the true state with probability close to
one regardless of how she processes the information.

5 Conclusion

In this paper, we axiomatize a new rule, the contraction rule, for updating
ambiguous beliefs. The rule moderates the two benchmark models of belief
updating, FB and ML, and departs from them by requiring that information
does not render an unambiguous belief over payoff-relevant states ambiguous.

19For instance, suppose that the true state is d1. If the total number of signals is large enough,
then with probability closed to one, there is a larger proportion of signal d̂1 than that of signal d̂2.
The maximum likelihood is achieved by associating signal d̂1 with accuracy H and associating
signal d̂2 with accuracy L. By this, the DM believes the probability of d1 to be close to 1.
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Our new rule shuts down the channel of belief dilation under mild conditions
and provides new predictions for applications involving with belief revising under
ambiguity. We leave the work of applying our theory to interactive decision-making
for future research.20

6 Appendix

6.1 Appendix A: Omitted Proofs and Examples

Proof of Proposition 1. Consider P ∈ P and P -non-null event E. If µP (E) ≤
1, then Qc(P,E) = {µP |E}. Clearly, |Qc(P,E)| = 1. If µP (E) > 1, then
Qc(P,E) = {Φ(p|E, µP |E)}p∈P . Fix some s ∈ E and pick p̂ ∈ P such that
p̂(s) = µP (s). Since µP (E) > 1, there exists s∗ ∈ E\s such that p̂(s∗) < µP (s∗).
For such s∗, pick p∗ ∈ P such that p∗(s∗) = µP (s∗). Since Φ(p∗|E, µP |E)(s∗) =
µP (s∗) > Φ(p̂|E, µP |E)(s∗), we know Φ(p∗|E, µP |E) ̸= Φ(p̂|E, µP |E). Thus,
|Qc(P,E)| ≠ 1.

For the second statement of the proposition, assume µP (E) > 1. Since p(s) ≤
µP (s) for all s ∈ E and p ∈ P , we have Φ(p|E, µP |E)(s) ≤ µP (s) for all s ∈ E

and p ∈ P . For each s ∈ E, there exists p̃ ∈ P such that p̃(s) = µP (s). Clearly,
Φ(p̃|E, µP |E)(s) = µP (s). Hence, maxq∈Qc(P,E) q(s) = maxp∈P p(s) for all s ∈ E.
That is, µP |E = µQc(P,E).

Proof of Proposition 2. Consider any P ∈ P and any P -non-null event E. If
µP (E) ≤ 1, then Qc(P,E) = {µP |E}, which is non-empty, convex, and closed. If
µP (E) > 1, then Qc(P,E) = {Φ(p|E, µP |E)}p∈P , which is non-empty. To see that
Qc(P,E) is convex, first note that G = {αp|E + (1 − α)µP |E : α ∈ [0, 1], p ∈ P} is
a convex set of measures. Since Qc(P,E) is the intersection of G with the set of
probability measures over E, Qc(P,E) is convex. To proceed, we show that Qc(P,E)
is closed. Consider a sequence of probability distributions {qn}+∞

n=1 ⊆ Qc(P,E)
that converges to some q. For each qn, there exists some pn ∈ P such that
qn = Φ(pn|E, µP |E). Since P is closed (and thus compact since it is bounded), it
is without loss of generality to assume that {pn}+∞

n=1 converges to some p ∈ P . It

20In an earlier version of the current paper, Tang (2020) applies the contraction rule to study
information design problems à la Kamenica and Gentzkow (2011) and shows that if the agent
updates with the contraction rule, then the principal can exact almost all the revenue through
suitable ambiguous information structures.
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follows that
qn = Φ(pn|E, µP |E) converges to Φ(p|E, µP |E).

That is, q = Φ(p|E, µP |E) ∈ Qc(P,E) and thus Qc(P,E) is closed.

For the second statement of the proposition, assume that p(E) = 1 for all
p ∈ P . We want to show that Qc(P,E) = P . If µP (E) ≤ 1, then P is a singleton,
since otherwise we can find different p, p̂ ∈ P such that 1 < µ{p,p̂}(E) ≤ µP (E),
which is a contradiction. Hence, P = {p∗} for some p∗. It follows that µP = p∗ and
Qc(P,E) = {µP |E} = {p∗|E} = {p∗} = P . If µP (E) > 1, then by formula (2), we
know Φ(p|E, µP |E) = p|E = p for each p ∈ P . Again, we have Qc(P,E) = P .

Example 5. For each n ≥ 1, let Pn = co({p, p̂, p̃n}) with support {s1, s2, s3} ⊆ S.
Distributions of p, p̂, and p̃n are: p(s1) = 1/2, p(s2) = 1/2, p(s3) = 0, p̂(s1) = 0,
p̂(s2) = 0, p̂(s3) = 1, p̃n(s1) = 1/(2n), p̃n(s2) = 0, and p̃n(s3) = 1−1/(2n). Let E =
{s1, s2} and p̃ = p̃1. It follows that Qfb(Pn, E) = co({p|E, p̃n|E}) = co({p|E, p̃|E}).
Note that {Pn}+∞

n=1 converges to P = {p, p̂}. However, {Qfb(Pn, E)}+∞
n=1 does not

converge to Qfb(P,E) since Qfb(P,E) = {p|E}.

Example 6. Let P = co({p, p̂}) with support {s1, s2, s3} ⊆ S. Distributions of
p and p̂ are: p(s1) = 1/5, p(s2) = 2/5, p(s3) = 2/5, p̂(s1) = 2/5, p̂(s2) = 1/5, and
p̂(s3) = 2/5. Let E = {s1, s2}. It follows that Qml(P,E) = co({p|E, p̂|E}) since
p({s1, s2}) = p̂({s1, s2}) = 3/5. Next, for each n ≥ 1, consider Pn = co({pn, p̂})
where pn(s1) = 1/5 − 1/(n + 5), pn(s2) = 2/5, and pn(s3) = 2/5 + 1/(n + 5). It
follows that Qml(Pn, E) = {p̂|E} for each n. Note that {Pn}+∞

n=1 converges to P ,
but {Qml(Pn, E)}+∞

n=1 does not converge to Qml(P,E).

Proof of Proposition 3. Since {Pn}+∞
n=1 converges to P , we know that for any

event E, {max
p∈Pn

p(E)}+∞
n=1 converges to max

p∈P
p(E). Since E is P -non-null, there exists

m such that for all n ≥ m, max
p∈Pn

p(E) > 0, i.e., for all n ≥ m, E is Pn-non-null.

To proceed, we show that {Qc(Pn, E)}+∞
n=m converges to Qc(P,E). Without

loss of generality, assume m = 1. We consider three cases: (a) µP (E) < 1, (b)
µP (E) > 1, and (c) µP (E) = 1. In case (a), there exists m∗ such that for all
n ≥ m∗, µPn(E) < 1. Hence, for each n ≥ m∗, Qc(Pn, E) = {µPn|E}. Note that
for each s ∈ E, {µPn(s)}+∞

n=1 converges to µP (s). It follows that {µPn|E}+∞
n=m∗

converges to µP |E. That is, {Qc(Pn, E)}+∞
n=1 converges to Qc(P,E).

In case (b), suppose to the contrary that {Qc(Pn, E)}+∞
n=1 does not converge

to Qc(P,E). Then there exists ϵ > 0 and a subsequence {Qc(Pnt , E)}+∞
t=1 such
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that dh(Qc(Pnt , E), Qc(P,E)) ≥ ϵ for all t. Without loss of generality, assume that
{Qc(Pnt , E)}+∞

t=1 = {Qc(Pn, E)}+∞
n=1. We only need to discuss two cases: (ib) there

exists a sequence {qn}+∞
n=1 such that qn ∈ Qc(Pn, E) and dh({qn}, Qc(P,E)) ≥ ϵ

for each n, or (iib) there exists a sequence {qn}+∞
n=1 ⊆ Qc(P,E) such that

dh({qn}, Qc(Pn, E)) ≥ ϵ for each n.

In case (ib), for each qn, there exists pn ∈ Pn such that qn = Φ(pn|E, µPn|E).
Consider a convergent subsequence {pnt}+∞

t=1 of {pn}+∞
n=1 that converges to some

p. Since {Pn}+∞
n=1 converges to P , we know that p ∈ P . By the definition of the

contraction rule, we know

qnt =
µPnt

(E) − 1
µPnt

(E) − pnt(E)pnt |E + 1 − pnt(E)
µPnt

(E) − pnt(E)µPnt
|E.

It follows that {qnt}+∞
t=1 converges to

µP (E) − 1
µP (E) − p(E)p|E + 1 − p(E)

µP (E) − p(E)µP |E = Φ(p|E, µP |E),

which is contained in Qc(P,E). This is a contradiction since dh({qn}, Qc(P,E)) ≥ ϵ

for each n. Therefore, case (ib) is impossible.

In case (iib), there exists a convergent subsequence {qnt}+∞
t=1 that converges to

some q ∈ Qc(P,E). There exists t∗ such that for all t ≥ t∗, dh({q}, Qc(Pnt , E)) ≥ ϵ
2 .

Note that there exists some p ∈ P such that q = Φ(p|E, µP |E). Since {Pnt}+∞
t=1

converges to P , there exists a sequence {pnt}+∞
t=1 converging to p where pnt ∈ Pnt

for each t. By a similar argument, we know that {Φ(pnt|E, µPnt
|E)}+∞

t=1 converges
to Φ(p|E, µP |E) = q. This is a contradiction since dh({q}, Qc(Pnt , E)) ≥ ϵ

2 for all
t ≥ t∗. Therefore, case (iib) is also impossible. Hence, {Qc(Pn, E)}+∞

n=1 converges
to Qc(P,E) in case (b).

In case (c), we know that Qc(P,E) = {µP |E} = {µP |E}. Divide {Pn}+∞
n=1 to

two subsequences {Pnt}∞
t=1 and {Pmt}∞

t=1 such that µPnt
(E) > 1 and µPmt

(E) ≤ 1
for all t (in some cases, one of the two sequences is finite, then we only consider
the other sequence). For {Pmt}∞

t=1, it is easy to show that {µPmt
|E}+∞

t=1 converges
to µP |E. For {Pnt}∞

t=1, suppose to the contrary that {Qc(Pnt , E)}+∞
t=1 does not

converge to {µP |E}. By a similar argument, (without loss of generality) we
can find pnt ∈ Pnt for each t such that the sequence {pnt}+∞

t=1 converges to some
p ∈ P , but {Φ(pnt|E, µPnt

|E)}+∞
t=1 does not converge to µP |E. If p(E) < 1, then
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{Φ(pnt|E, µPnt
|E)}+∞

t=1 converges to µP |E, which is a contradiction. If p(E) = 1,
then for each p̂ ∈ P , either p̂ = p or p̂(s) ≤ p(s) for all s ∈ E, since otherwise
µP (E) > 1. This implies that µP |E = p. It follows that both {pnt|E}+∞

t=1 and
{µPnt

|E}+∞
t=1 converge to µP |E. Thus {Φ(pnt|E, µPnt

|E)}+∞
t=1 converges to µP |E,

which is again a contradiction. Hence, {Qc(Pnt , E)}+∞
t=1 converges to {µP |E}.

Proof of Proposition 4. We consider three cases. In case (i), µP (E) ≤ 1. We
have Qc(P,E) = {µP |E}. Then Qc(Qc(P,E), F ) = Qc({µP |E}, F ) = {µP |E|F} =
{µP |F} = Qc(P, F ). In case (ii), µP (E) > 1 and µP (F ) ≤ 1. By Proposition 1,
we have µP |E = µQc(P,E). Clearly, it implies µP |F = µQc(P,E)|F . By a similar
argument as case (i), we know that Qc(Qc(P,E), F ) = Qc(P, F ). In case (iii),
µP (E) > 1 and µP (F ) > 1. We need the following lemma, of which the proof is
simple algebra and thus omitted.

Lemma 1. For any π, π′ ∈ M(S) and any α ∈ (0, 1] such that π(S) ≤ 1, π′(S) > 1,
and (απ + (1 − α)π′)(S) ≤ 1, we have Φ(π, π′) = Φ(απ + (1 − α)π′, π′).

Back to the proof for case (iii), since µP |F = µQc(P,E)|F , we have Qc(Qc(P,E), F ) =
{Φ(q|F, µP |F )}q∈Qc(P,E) = {Φ(Φ(p|E, µP |E)|F, µP |F )}p∈P . Note that for each
p ∈ P , Φ(p|E, µP |E) = αp|E + (1 − α)µP |E for some α ∈ (0, 1]. Hence,
Φ(p|E, µP |E)|F = αp|F + (1 − α)µP |F . By Lemma 1, we have

{Φ(Φ(p|E, µP |E)|F, µP |F )}p∈P = {Φ(p|F, µP |F )}p∈P = Qc(P, F ).

Proof of Theorem 1. We start with several lemmas. Then we prove the necessity
and sufficiency parts of the theorem. Throughout the proof, we fix the partition
Π = {{s} : s ∈ E} ∪ {S\E}.

Lemma 2. For any P ∈ P and event E, if µP (E) > 1, then

(
co (P ∪Qc(P,E))

)
Π

=
⋃

p∈P

(
co({p,Φ(p|E, µP |E)})

)
Π
. (3)

Proof. Let B = ⋃
p∈P

(
co({p,Φ(p|E, µP |E)})

)
Π

. Clearly,
(
P ∪ Qc(P,E)

)
Π

⊆ B ⊆(
co (P ∪Qc(P,E))

)
Π

. It suffices to show that B is convex. Define the set of
measures G = {αp|E + (1 − α)µP |E : α ∈ [0, 1], p ∈ P}. G is a convex set since
P |E is convex. Consider the subset G′ ⊆ G such that G′ = {π ∈ G : π(E) ≤ 1}.
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It follows that G′ is convex. Since B|E = G′ and Π = {{s} : s ∈ E} ∪ {S\E}, B
is also convex. We are done.

Lemma 3. For any P, P̂ , P̃ ∈ P, E ∈
(
SP ∩ SP̂

)
\SP̃ , and α ∈ (0, 1] with

αµP (E) > 1, let P 1 = αP + (1 − α)P̃ and P 2 = αP̂ + (1 − α)P̃ . If (i) P 2
Π ⊆(

co(P 1 ∪ Qc(P 1, E))
)

Π
and (ii) for each p ∈ P 1, there exists p̂ ∈ P 2 such that

p̂Π ∈
(
co({p,Φ(p|E, µP 1|E)})

)
Π

, then Qc(P,E) = Qc(P̂ , E).

Proof. Condition (i) and Lemma 2 imply that for each p̂ ∈ P 2, there exists p ∈ P 1

such that p̂Π ∈
(
co({p,Φ(p|E, µP 1|E)})

)
Π

. Thus, for each p̂ ∈ P 2, there exists
p ∈ P 1 such that p̂|E = βp|E + (1 − β)Φ(p|E, µP 1|E) = ηp|E + (1 − η)µP 1 |E
for some β ∈ [0, 1] and η ∈ (0, 1]. Since E is P̃ -null, we know αP |E = P 1|E,
αP̂ |E = P 2|E, µP 1|E = αµP |E, and µP 2|E = αµP̂ |E. Thus, for each p̂∗ ∈ P̂ ,
there exists p∗ ∈ P and η ∈ (0, 1] such that αp̂∗|E = ηαp∗|E + (1 − η)αµP |E, i.e.,

p̂∗|E = ηp∗|E + (1 − η)µP |E. (4)

By a similar argument, condition (ii) implies that for each p∗ ∈ P , there exists
p̂∗ ∈ P̂ such that condition (4) holds for some η ∈ (0, 1]. Clearly, it implies
µP |E = µP̂ |E. Note that if p̂∗ and p∗ satisfy condition (4) for some η ∈ (0, 1],
then Φ(p̂∗|E, µP̂ |E) = Φ(p̂∗|E, µP |E) = Φ(p∗|E, µP |E), where the second equality
follows from Lemma 1. We conclude that for each p̂∗ ∈ P̂ , there exists p∗ ∈ P

such that Φ(p̂∗|E, µP̂ |E) = Φ(p∗|E, µP |E), and vice versa. Thus, Qc(P,E) =
Qc(P̂ , E).

The next lemma can be proved similarly as Lemma 3, and thus we omit its
proof.

Lemma 4. For any P, P̂ , P̃ ∈ P, E ∈
(
SP ∩ SP̂

)
\SP̃ , and α ∈ (0, 1] with

αµP (E) = 1, let P 1 = αP + (1 − α)P̃ and P 2 = αP̂ + (1 − α)P̃ . If (i) P 2
Π ⊆(

co(P 1 ∪ {µP 1|E})
)

Π
and (ii) for each p ∈ P 1, there exists p̂ ∈ P 2 such that

p̂Π ∈
(
co({p, µP 1|E})

)
Π

, then Qc(P,E) = Qc(P̂ , E).

Lemma 5. For any V, V̂ ∈ V and α ∈ [0, 1], if P represents V and P̂ represents V̂ ,
then αV + (1 −α)V̂ is an evaluation function that is represented by αP + (1 −α)P̂ .

Proof. Consider an arbitrary f ∈ F . We have EαP +(1−α)P̂ (f) = min
p∈P,p̂∈P̂

Eαp+(1−α)p̂(f) =

min
p∈P

min
p̂∈P̂

Eαp+(1−α)p̂(f) = min
p∈P

min
p̂∈P̂

(αEp(f) + (1 − α)Ep̂(f)) = αmin
p∈P

Ep(f) + (1 −
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α) min
p̂∈P̂

Ep̂(f) = αV (f) + (1 −α)V̂ (f) = (αV + (1 −α)V̂ )(f). Thus, αV + (1 −α)V̂

is an evaluation function and is represented by αP + (1 − α)P̂ .

The next two lemmas are trivial and thus their proofs are omitted. We write
them here only for the purpose of reference.

Lemma 6. For any V ∈ V and partition Π∗ = {Si}n
i=1 of S, V is unambiguous

with respect to Π∗ if and only if PΠ∗ is a singleton, where P ∈ P represents V .

Lemma 7. For any V ∈ V and event E, suppose that V is represented by some
P ∈ P. Then E is P -null if and only if E is V -null

Lemma 8. With the contraction rule, for any V ∈ V and V -non-null event E,
suppose that V is represented by some P ∈ P. Then E does not strongly resolve
ambiguity of V if and only if µP (E) ≥ 1.

Proof. If E does not strongly resolve ambiguity of V , then there exists evaluation
function V̂ such that (αV + (1 − α)V̂ )E is ambiguous for all α ∈ (0, 1). Let V̂ be
represented by P̂ . By Lemma 5, αV + (1 − α)V̂ is represented by αP + (1 − α)P̂ .
It follows from Proposition 1 and Lemma 6 that for all α ∈ (0, 1), µαP +(1−α)P̂ (E) >
1. Thus, µP (E) ≥ 1. Inversely, if µP (E) ≥ 1, then consider some evaluation
function V̂ such that P̂ represents V̂ and µP̂ (E) > 1. We have for any α ∈ (0, 1),
µαP +(1−α)P̂ (E) > 1. By Proposition 1 and Lemma 6, (αV +(1−α)V̂ )E is ambiguous
for all α ∈ (0, 1). Hence, E does not strongly resolve ambiguity of V .

Lemma 9. For any V, V̂ ∈ V and E ∈ SV ∩ SV̂ , if P represents V , P̂ represents
V̂ , and V (fEx) = V̂ (fEx) for all f ∈ F and x ∈ K, then P |E = P̂ |E.

Proof. It is clear that V and V̂ agree on evaluations for acts measurable with respect
to the partition Π. It follows from the uniqueness of the max-min representation
that PΠ = P̂Π. This implies P |E = P̂ |E.

(Necessity) We show that the contraction rule satisfies all the axioms.

Claim 1. The contraction rule satisfies axiom ADSU.

Proof. Consider any V ∈ V and V -non-null event E. Let V be represented
by P , and thus VE is represented by Qc(P,E). It suffices to show that if VE

is unambiguous, then for any f and g with g ▷s f for some s ∈ E, we have
V (g) − V (f) ≤ VE(g) − VE(f). Since VE is unambiguous, by Lemma 6 and
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Proposition 1, we know µP (E) ≤ 1. Thus, Qc(P,E) = {µP |E}. Since µP |E(s) ≥
p(s) for each p ∈ P , it follows that

V (g) − V (f) = V (g) − Ep∗(f) ≤ Ep∗(g) − Ep∗(f)

= p∗(s)[g(s) − f(s)] ≤ µP |E(s)[g(s) − f(s)] = VE(g) − VE(f),

where p∗ ∈ P minimizes the expected payoff of f , and the first inequality follows
from the max-min representation of V .

Claim 2. The contraction rule satisfies axiom MIA.

Proof. Consider any V, V̂ ∈ V , event E, and α ∈ (0, 1] that satisfy the conditions
stated in the axiom. Let V be represented by P and V̂ represented by P̂ . By
Lemma 5, αV + (1 − α)V̂ is represented by αP + (1 − α)P̂ . Since E is V̂ -null, by
Lemma 7, E is P̂ -null. Since VE is unambiguous, we know that VE is represented by
{µP |E}. Then we have µαP +(1−α)P̂ (E) = αµP (E) ≤ 1 and µαP +(1−α)P̂ |E = µP |E.
Thus, we conclude that VE = (αV + (1 − α)V̂ )E.

Claim 3. The contraction rule satisfies axiom IIS.

Proof. Consider two evaluation functions V and V̂ . Let V be represented by P

and V̂ represented by P̂ . Consider an event E ∈ SV ∩ SV̂ . Suppose that for any
f ∈ F and any x ∈ K, V (fEx) = V̂ (fEx). By Lemma 9, we know P |E = P̂ |E.
Clearly, it implies that Qc(P,E) = Qc(P̂ , E), and thus VE = V̂E.

Claim 4. The contraction rule satisfies axiom MAB.

Proof. Consider evaluation functions V, V̂ , and Ṽ , event E, and α ∈ (0, 1] that
satisfy the conditions stated in the axiom. Let V be represented by P , V̂ represented
by P̂ , and Ṽ represented by P̃ . Let W = αV + (1 − α)Ṽ , Ŵ = αV̂ + (1 − α)Ṽ ,
P 1 = αP + (1 − α)P̃ , and P 2 = αP̂ + (1 − α)P̃ . Since E does not strongly resolve
ambiguity of W , we know by Lemma 8 that µP 1(E) ≥ 1. We only prove the axiom
for the case where µP 1(E) > 1. The case where µP 1(E) = 1 can be shown similarly.

First, we show that P 2
Π ⊆

(
co(P 1 ∪ Qc(P 1, E))

)
Π

. Suppose to the contrary
that P 2

Π ̸⊆
(
co(P 1 ∪ Qc(P 1, E))

)
Π

. Then there exists p̂ ∈ P 2 such that p̂Π /∈(
co(P 1 ∪Qc(P 1, E))

)
Π

. By the separating hyperplane theorem, there exists f ∈ F
and x ∈ K such that ∑

s∈E p̂(s)f(s) + p̂(E)x <
∑

s∈E p(s)f(s) + p(E)x for all
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p ∈ co(P 1 ∪ Qc(P 1, E)). It follows that Ŵ (fEx) < min {W (fEx),WE(f)}, a
contradiction.

Next, we show that for each p ∈ P 1, there exists p̂ ∈ P 2 such that
p̂Π ∈

(
co({p,Φ(p|E, µP 1|E)})

)
Π

. Suppose to the contrary that for some p ∈ P 1,(
co({p,Φ(p|E, µP 1 |E)})

)
Π

intersects P 2
Π at an empty set. By the separating

hyperplane theorem, we can find some f ∈ F and some x ∈ K such that

Ŵ (fEx) >
∑
s∈E

p(s)f(s) + p(E)x ≥ W (fEx),

Ŵ (fEx) >
∑
s∈E

Φ(p|E, µP 1 |E)(s)f(s) ≥ WE(f),

which contradicts to that Ŵ (fEx) ≤ max {W (fEx),WE(f)} .

Since (i) P 2
Π ⊆

(
co(P 1 ∪ Qc(P 1, E))

)
Π

, and (ii) for each p ∈ P 1, there exists
p̂ ∈ P 2 such that p̂Π ∈

(
co({p,Φ(p|E, µP 1|E)})

)
Π

, it follows from Lemma 3 that
Qc(P,E) = Qc(P̂ , E). Thus we conclude that VE = V̂E.

Claim 5. The contraction rule satisfies axiom NAI.

Proof. Consider V , partition Π∗ = {Si}n
i=1, and event E that satisfy the conditions

stated in the axiom. Let V be represented by P . Since V is unambiguous
with respect to {Si}n

i=1, we know PΠ∗ is a singleton. It follows that µP (E) =∑
s∈E (maxp∈P p(s)) ≤ ∑n

i=1 (maxp∈P p(Si)) = 1, and thus VE is unambiguous.

(Sufficiency) In what follows, we show that the axioms are sufficient for an
updating rule Γ to be the contraction rule. We assume throughout the proof that
Γ satisfies all the axioms. We use VE to denote the ex post evaluation function
under the updating rule Γ.

Lemma 10. For any V ∈ V and event E, if P represents V and µP (E) > 1, then
VE is ambiguous.

Proof. Consider V , P , and E that satisfy the conditions of the lemma. Since E is
finite and S is infinite, there exists finite Ê ⊆ S such that |E| = |Ê| and E∩ Ê = ∅.
Consider an arbitrary isomorphism τ : E → Ê and let ŝ = τ(s) for each s ∈ E.
For each p ∈ P , define p̂ such that

p̂(s) = p(s),∀s ∈ E,
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p̂(ŝ) = Φ(p|E, µP |E)(s) − p(s), ∀ŝ ∈ Ê.

Each p̂ is well-defined since Φ(p|E, µP |E)(s) ≥ p(s) for all s ∈ E. It follows that
(i) p̂(E ∪ Ê) = 1 for each p̂ ∈ P̂ , (ii) PΠ = P̂Π, and (iii) P̂Π∗ =

(
Qc(P,E)

)
Π∗

,
where Π∗ = {{s, ŝ} : s ∈ E} ∪ {S\(E ∪ Ê)}. Also, note that P̂ is closed, and thus
co(P̂ ) ∈ P. Let V̂ be the evaluation function that is represented by co(P̂ ). Since
P̂Π = PΠ, we know V (fEx) = V̂ (fEx) for all f ∈ F and x ∈ K. By axiom IIS, to
show that VE is ambiguous, it suffices to show that V̂E is ambiguous.

Suppose to the contrary that V̂E is unambiguous and represented by {q}. Fix
some s ∈ E. Consider act f such that f(s) = 0, f(ŝ) = 1, and f(s̃) = 0 for all
s̃ ∈ S\{s, ŝ}. It is clear that V̂E(f) = 0 since f equals 0 on E. We argue that
V̂ (f) = 0. Note that

V̂ (f) = min
p̃∈co(P̂ )

Ep̃(f) = min
p̃∈co(P̂ )

p̃(ŝ) = 0,

where the second equality holds since for any p ∈ P satisfying p(s) = µP (s), we
have p̂(ŝ) = Φ(p|E, µP |E)(s) − p(s) = 0. Define P̂ ∗ ⊆ P̂ such that p̂ ∈ P̂ ∗ if and
only if p(s) = µP (s). It follows that

arg min
p̃∈co(P̂ )

p̃(ŝ) = co(P̂ ∗).

To proceed, for each ϵ ∈ (0, 1), define act f ϵ such that f ϵ(s) = ϵ, f ϵ(ŝ) = 1,
and f ϵ(s̃) = 0 for all s̃ ∈ S\{s, ŝ}. Since V̂ is concave and co(P̂ ∗) contains all the
supergradients of V̂ at f , we know that when ϵ is sufficiently small,

V̂ (f ϵ) − V̂ (f) = min
p̃∈co(P̂ ∗)

Ep̃(f ϵ − f) + o(ϵ),

where o(ϵ) denotes an infinitesimal term of ϵ. Since for each p̃ ∈ co(P̂ ∗), p̃(s) =
µP (s), the above equality can be written as

V̂ (f ϵ) − V̂ (f) = µP (s)ϵ+ o(ϵ).

Hence, for any k < µP (s), we can find small enough ϵ such that V̂ (f ϵ) − V̂ (f) > kϵ.
Since V̂E is represented by {q}, we know V̂E(f ϵ) − V̂E(f) = q(s)ϵ. It follows from
axiom ADSU that q(s) ≥ µP (s). By a similar argument, we can show that for each
s̃ ∈ E, q(s̃) ≥ µP (s̃), which is impossible since µP (E) > 1. Therefore, we conclude
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that V̂E is ambiguous, and so is VE.

Lemma 11. For any V ∈ V and V -non-null event E, if P represents V and
µP (E) ≤ 1, then VE is unambiguous, and if µP (E) = 1, then VE is represented by
{µP |E}.

Proof. Consider V , E, and P that satisfy the conditions of the first statement
of the lemma. Since E is V -non-null, µP |E is well-defined. In addition, since
µP (E) ≤ 1, we have µP |E(s) ≥ µP |E(s) ≥ p(s) for each p ∈ P and each s ∈ E.
Since S is infinite and E is finite, there exists finite Ê ⊆ S such that |E| = |Ê|
and E ∩ Ê = ∅. Consider an arbitrary isomorphism τ : E → Ê and let ŝ = τ(s)
for each s ∈ E. Define P̂ as follows. For each p ∈ P , define some p̂ ∈ P̂ such
that p̂(s) = p(s) for each s ∈ E and p̂(ŝ) = µP |E(s) − p(s) for each ŝ ∈ Ê. It is
easy to verify that P̂ ∈ P and P̂ |E = P |E. Let V̂ be the evaluation function
that is represented by P̂ . It follows that V (fEx) = V̂ (fEx) for all f ∈ F and
x ∈ K. By axiom IIS, VE = V̂E. Note that for each p̂ ∈ P̂ and each s ∈ E,
p̂({s, ŝ}) = µP |E(s). It follows that V̂ is unambiguous with respect to the partition
{{s, ŝ} : s ∈ E} ∪ {S\(E ∪ Ê)}. By axiom NAI, V̂E is unambiguous, and so is VE.

If µP (E) = 1, then µP̂ (E) = 1. It suffices to show that V̂E is represented by
{µP |E}. Suppose that V̂E is represented by {q}. Fix some s ∈ E. Consider acts
f and g such that f(s) = 0, f(ŝ) = 1, f(s̃) = 0 for all s̃ ∈ S\{s, ŝ}, g(s) = 1/2,
g(ŝ) = 1, and g(s̃) = 0 for all s̃ ∈ S\{s, ŝ}. Note that

V̂ (g) = min
p̂∈P̂

Ep̂(g) = min
p̂∈P̂

(1
2 p̂(s) + p̂(ŝ)

)
= min

p̂∈P̂

(1
2 p̂(s) + µP (s) − p̂(s)

)
= µP (s) − 1

2 max
p̂∈P̂

p̂(s) = µP (s) − 1
2µP (s) = 1

2µP (s).

Similarly, we have V̂ (f) = 0. Since V̂E is represented by {q}, we know V̂E(f) = 0
and V̂E(g) = 1

2q(s). Since V̂ (f) = V̂E(f) and V̂E is unambiguous, axiom ADSU
implies that V̂ (g) ≤ V̂E(g). That is, µP (s) ≤ q(s). By a similar argument, for each
s̃ ∈ E, we should have µP (s̃) ≤ q(s̃). Hence, we conclude that µP |E = q.

The next two lemmas establish the sufficiency part of the proof.

Lemma 12. For any V ∈ V and V -non-null event E, if P represents V and
µP (E) < 1, then VE is represented by {µP |E}.
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Proof. Consider V , E, and P that satisfy the conditions of the lemma. Fix some
s∗ ∈ S\E. Define P̂ such that (i) P̂ |E = P |E and (ii) p̂(E ∪ s∗) = 1 for all
p̂ ∈ P̂ . Note that P̂ can be constructed by defining p̂ ∈ P̂ for each p ∈ P such that
p̂(s) = p(s) for each s ∈ E and p̂(s∗) = 1 − p(E). Since P ∈ P, we know that
P̂ ∈ P. Let V̂ be the evaluation function that is represented by P̂ . P |E = P̂ |E
implies that V (fEx) = V̂ (fEx) for all f ∈ F and x ∈ K. By axiom IIS, we have
VE = V̂E.

To proceed, we construct another set of priors P̃ as follows. Let p̃ ∈ P̃ if
and only if there exists p̂ ∈ P̂ such that p̃(s) = p̂(s)/µP̂ (E) for each s ∈ E and
p̃(s∗) = 1 − p̃(E). It is easy to verify that P̃ ∈ P . Note that P̂ = αP̃ + (1 −α){q},
where α = µP̂ (E) and q(s∗) = 1. Let Ṽ be the evaluation function that is
represented by P̃ . By Lemma 5, we know V̂ = αṼ + (1 − α)V ∗, where V ∗ is
represented by {q}. Since E is {q}-null and µP̃ (E) = 1 (which means that ṼE is
unambiguous by Lemma 11), axiom MIA implies that V̂E = ṼE. By Lemma 11,
ṼE is represented by {µP |E}, and so are V̂E and VE.

Lemma 13. For any V ∈ V and V -non-null event E, if P represents V and
µP (E) > 1, then VE is represented by Qc(P,E) = {Φ(p|E, µP |E) : p ∈ P}.

Proof. Consider V , E, and P that satisfy the conditions of the lemma. Assume
that for some s∗ ∈ S\E, p(E ∪ s∗) = 1 for all p ∈ P . By axiom IIS, imposing
this assumption will not affect VE . By Proposition 2, Qc(P,E) is an element of
P. Hence, there exists an evaluation function V̂ that is represented by Qc(P,E).
Consider q∗ ∈ ∆(S) such that q∗(s∗) = 1 and let Ṽ be represented by {q∗}. Let
α = 1/µP (E) ∈ (0, 1) and define W = αV + (1 − α)Ṽ and Ŵ = αV̂ + (1 − α)Ṽ .
By Lemma 5, W is represented by αP + (1 − α){q∗} and Ŵ represented by
αQc(P,E) + (1 − α){q∗}. Note that µαP +(1−α){q∗}(E) = 1. By Lemma 8, E does
not strongly resolve ambiguity of W .

To proceed, we show that for all f ∈ F and x ∈ K, min{W (fEx),WE(f)} ≤
Ŵ (fEx) ≤ max{W (fEx),WE(f)}. Consider any f ∈ F and any x ∈ K. Note
that

(i) ∀q ∈ Qc(P,E), ∃t ∈ [0, 1] and ∃p ∈ P such that tp|E+ (1 − t)µP |E = q, and
(ii) ∀p ∈ P , ∃t ∈ [0, 1] and ∃q ∈ Qc(P,E) such that tp|E + (1 − t)µP |E = q.

It follows that
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(iii) ∀q ∈ αQc(P,E) + (1 − α){q∗}, ∃t ∈ [0, 1] and ∃p ∈ αP + (1 − α){q∗} such
that tp|E + (1 − t)µαP +(1−α){q∗}|E = q|E, and

(iv) ∀p ∈ αP + (1 − α){q∗}, ∃t ∈ [0, 1] and ∃q ∈ αQc(P,E) + (1 − α){q∗} such
that tp|E + (1 − t)µαP +(1−α){q∗}|E = q|E.

Note that µαP +(1−α){q∗}|E = µP |E. Thus, condition (iii) implies that αQc(P,E) +
(1 −α){q∗} ⊆ co

(
(αP + (1 −α){q∗}) ∪ {µP |E}

)
. By Lemma 11, WE is represented

by {µP |E}. It follows that Ŵ (fEx) ≥ min{W (fEx),WE(f)}.

Next, we argue that condition (iv) implies that Ŵ (fEx) ≤ max{W (fEx),WE(f)}.
To see this, let W (fEx) = Ep(fEx) for some p ∈ αP + (1 − α){q∗}. By
condition (iv), there exists t ∈ [0, 1] and q ∈ αQc(P,E) + (1 − α){q∗} such
that tp|E + (1 − t){µP |E} = q|E. That is, tp+ (1 − t){µP |E} = q. It follows that
Ŵ (fEx) ≤ Eq(fEx) = tEp(fEx) + (1 − t)EµP |E(f) = tW (fEx) + (1 − t)WE(f) ≤
max{W (fEx),WE(f)}.

Since min{W (fEx),WE(f)} ≤ Ŵ (fEx) ≤ max{W (fEx),WE(f)} for all f ∈
F and x ∈ K, by axiom MAB, we know that VE = V̂E. Since V̂ is represented by
Qc(P,E), which means that q(E) = 1 for all q ∈ Qc(P,E), we know that V̂E = V̂ .
Therefore, we conclude that VE is represented by Qc(P,E).

Proof of Proposition 5. Let D = {d1, d2}. The DM’s prior beliefs over D can
be fully captured by [1−maxp∈P p({d2}×Θ),maxp∈P p({d1}×Θ)]: the probability
of d1 is at least 1 − maxp∈P p({d2} × Θ) and at most maxp∈P p({d1} × Θ). After
the DM observes some signal θ, there are two cases to be considered. First, the
DM’s contraction posterior set is a singleton. Clearly, there is no dilation in this
case. Second, the DM’s contraction posterior set is not a singleton. In this case,
the DM’s ex post beliefs over D are given by [1 − maxp∈P p(d2, θ),maxp∈P p(d1, θ)]:
the probability of d1 is at least 1 − maxp∈P p(d2, θ) and at most maxp∈P p(d1, θ).
Clearly, the ex post belief set does not strictly contain the ex ante one.

Proof of Proposition 6. The first case is trivial since when the DM has no
prior ambiguity over D, her contraction posterior set is a singleton. Consider
the second case of the proposition. Note that the primitive conditions imply
that maxp∈P p({d} × Θ) > maxp∈P p(d, θ) for all d ∈ D and θ ∈ Θ. Thus,
maxp∈P p({d} × Θ) > µP (d, θ). When θ is observed, if contraction posterior set is a
singleton, then clearly there is no dilation. If not, then maxp∈P p({d}×Θ) > µP (d, θ)
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implies the ex ante maximal probability of d is strictly higher than the ex post one
of d. Therefore, there is no dilation of payoff-relevant belief sets.

Proof of Proposition 7. The DM’s evaluation of f is equal to the minimal
probability of state d1. The DM’s evaluation of g is given by the minimal probability
of state d2.

First, consider scenario 1 where the information is ambiguous. Note that the
maximal probability of (d1, d̂1) is rH and that of (d2, d̂1) is (1 − r)(1 − L). The
values of va

f and va
g depend on whether d̂1 resolves the DM’s ambiguity or not, i.e.,

whether rH + (1 − r)(1 − L) is less than one or not. If rH + (1 − r)(1 − L) ≤ 1,
then we have va

f = rH
rH+(1−r)(1−L) and va

g = (1−r)(1−L)
rH+(1−r)(1−L) . If rH+(1−r)(1−L) > 1,

then we have va
f = 1 − (1 − r)(1 − L) and va

g = 1 − rH.

Next, consider scenario 2. With signal d̂1, the maximal probability of (d1, d̂1)
is r(H + L)/2 and that of (d2, d̂1) is (1 − r)(2 − H − L)/2. Since r(H + L)/2 +
(1 − r)(2 − H − L)/2 ≤ 1, the realization of d̂1 resolves the ambiguity. Thus we
have vu

f = r̄(H+L)
r̄(H+L)+(1−r)(2−H−L) and vu

g = (1−r)(2−H−L)
r̄(H+L)+(1−r)(2−H−L) .

It can be easily verified that H+L
2−H−L

> H
1−L

whenever H + L > 1. Thus
when r̄H + (1 − r)(1 − L) ≤ 1, va

f = rH
rH+(1−r)(1−L) <

r̄(H+L)
r̄(H+L)+(1−r)(2−H−L) = vu

f .
When r̄H + (1 − r)(1 − L) > 1, we have va

f = 1 − (1 − r)(1 − L) ≤
rH

rH+(1−r)(1−L) <
r̄(H+L)

r̄(H+L)+(1−r)(2−H−L) = vu
f , where the first inequality holds since

va
f

1−va
f

= 1−(1−r)(1−L)
(1−r)(1−L) ≤ r̄H

(1−r)(1−L) . The comparison between va
g and vu

g follows from
similar calculations.

Proof of Proposition 8. We only prove that for any ϵ > 0, the proba-
bility of minr∈In

d1
≥ 1 − ϵ goes to one. When n is large enough, the

contraction posterior set of the DM is a singleton. With signal sequence
(d̂1, ..., d̂n), the contraction posterior likelihood ratio between d1 and d2 is

r̄
1−r

∏n
t=1 (H/(1 − L))1[d̂t=d̂1] ∏n

t=1 ((1 − L)/H)1[d̂t=d̂2] . Thus, minr∈In
d1

≥ 1 − ϵ

if and only if ∏n
t=1 (H/(1 − L))1[d̂t=d̂1] ∏n

t=1 ((1 − L)/H)1[d̂t=d̂2] ≥ 1−r
r̄

1−ϵ
ϵ

, i.e.,∑n
t=1(ln((H/(1 − L))1[d̂t=d1]) + ln(((1 − L)/H)1[d̂t=d2])) ≥ ln

(
(1−ϵ)(1−r)

ϵr

)
. Since

{ln((H/(1 − L))1[d̂t=d1]) + ln(((1 − L)/H)1[d̂t=d2])}n
t=1 is a sequence of independent

random variables with positive mean, by law of large number, we know that the
probability of the above inequality goes to one as n goes to infinity.
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6.2 Appendix B: Full-Bayesian Rule

Let V fb
E denote the FB ex post evaluation function of V when the realized event

is E. For any P ∈ P and any P -non-null event E, the FB posterior set is
Qfb(P,E) = cl

(
{p|E : p ∈ P, p(E) > 0}

)
∈ P. We say that E is strictly V -

non-null if V (f) < V (g) for all f, g satisfying that g(s) ≥ f(s) for all s ∈ S and
g(s′) > f(s′) for all s′ ∈ E. It can be shown that when V is represented by P , E
is strictly V -non-null if and only if minp∈P p(E) > 0. When minp∈P p(E) > 0, the
set {p|E : p ∈ P} is closed and thus Qfb(P,E) = {p|E : p ∈ P}. We fix partition
Π = {{s} : s ∈ E} ∪ {S\E}.

Proposition 9. FB satisfies axiom ADSU.

Proof. Let V ∈ V be represented by P and event E be V -non-null. If V fb
E is

unambiguous, then Qfb(P,E) is a singleton. Let Qfb(P,E) = {q}. Consider any
f, g ∈ F such that V (f) = V fb

E (f) and g ▷s f for some s ∈ E. Let p∗ ∈ P satisfy
p∗(s) ≥ p(s) for all p ∈ P . It follows that V (g) − V (f) ≤ p∗(s)(g(s) − f(s)). Since
either p∗(s) = 0 or p∗|E = q, we have q(s) ≥ p∗(s). Thus V fb

E (g) − V fb
E (f) =

q(s)(g(s) − f(s)) ≥ V (g) −V (f). By V fb
E (f) = V (f), we know V fb

E (g) ≥ V (g).

Proposition 10. FB satisfies axiom MI.

Proof. Consider V , V̂ , α, and E that satisfy the conditions stated in axiom MI. Let
V and V̂ be represented by P and P̂ respectively. Since E is V̂ -null, by Lemma 7, it
is P̂ -null. It follows that (αP +(1−α)P̂ )|E = αP |E. Therefore, we have {p|E : p ∈
P, p(E) > 0} = {αp|E : p ∈ P, p(E) > 0} = {p̃|E : p̃ ∈ αP + (1 − α)P̂ , p̃(E) > 0}.
Hence, we conclude that V fb

E = (αV + (1 − α)V̂ )fb
E .

Proposition 11. FB satisfies axiom B.

Proof. Consider V , V̂ , and E that satisfy the conditions stated in axiom B. Let
V and V̂ be represented by P and P̂ respectively. Then V fb

E is represented by
Qfb(P,E) = cl

(
{p|E : p ∈ P, p(E) > 0}

)
. Clearly, we have

⋃
p∈P :p(E)>0

co
(
{p, p|E}

)
Π

⊆ co
(
P ∪Qfb(P,E)

)
Π
.

Since min{V (fEx), V fb
E (f)} ≤ V̂ (fEx) for all f ∈ F and x ∈ K, we know

P̂Π ⊆ co
(
P ∪ Qfb(P,E)

)
Π

. It follows that Qfb(P̂ , E) ⊆ Qfb(P,E). Next, since
max{V (fEx), V fb

E (f)} ≥ V̂ (fEx) for all f ∈ F and x ∈ K, by a similar proof
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as that of Claim 4, we know that for each p ∈ P with p(E) > 0, there exists
p̂ ∈ P̂ such that p̂Π ∈ co

(
{p, p|E}

)
Π

. It implies {p|E : p ∈ P, p(E) > 0} ⊆ {p̂|E :
p̂ ∈ P̂ , p̂(E) > 0}, and thus Qfb(P,E) ⊆ Qfb(P̂ , E). Hence we conclude that
V fb

E = V̂ fb
E .

Proposition 12. If an updating rule Γ satisfies axioms MI and B, then Γ(V,E) =
V fb

E for any strictly V -non-null event E.

Proof. Consider V ∈ V and an event E that is strictly V -non-null. Let P represent
V . If p(E) = 1 for each p ∈ P , then clearly we have Γ(V,E) = V fb

E . If p(E) < 1
for some p ∈ P , since minp∈P p(E) > 0, we know Qfb(P,E) = {p|E : p ∈ P}.
Let V̂ be the evaluation function that is represented by Qfb(P,E). Consider Ṽ
such that Ṽ is represented by {q∗} where q∗(E) = 0. Let 0 < α < minp∈P p(E)
and define W = αV̂ + (1 − α)Ṽ . By the construction, W is represented by
{αp|E + (1 − α)q∗ : p ∈ P}. By axiom MI, Γ(W,E) = Γ(V̂ , E), and thus Γ(W,E)
is represented by Qfb(P,E), i.e., Γ(W,E) = V̂ . It remains to show that

min{W (fEx),Γ(W,E)(f)} ≤ V (fEx) ≤ max{W (fEx),Γ(W,E)(f)}

for all f ∈ F and x ∈ K (then by axiom B, Γ(V,E) = Γ(W,E) = V fb
E , and we are

done). Fix some f and x. Since α < minp∈P p(E), we have PΠ ⊆ co
(
Qfb(P,E) ∪

{αp|E + (1 − α)q∗ : p ∈ P}
)

Π
. It follows that min{W (fEx),Γ(W,E)(f)} ≤

V (fEx). Next, let p∗ ∈ P satisfy that p∗|E ∈ arg minq∈Qfb(P,E) Eq(f). It follows
that Ep∗(fEx) = p∗(E)Γ(W,E)(f)+(1−p∗(E))x. Since W (fEx) = αΓ(W,E)(f)+
(1−α)x and α < p∗(E), we know that Ep∗(fEx) is a convex combination of W (fEx)
and Γ(W,E)(f). Hence, Ep∗(fEx) ≤ max{W (fEx),Γ(W,E)(f)}, and this implies
V (fEx) ≤ max{W (fEx),Γ(W,E)(f)}.
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